gg_mdl

This model is a fine-tuned version of openai/whisper-base on the gg_ds dataset. It achieves the following results on the evaluation set:

  • Loss: 1.7053
  • Cer: 26.9304

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 1e-05
  • train_batch_size: 4
  • eval_batch_size: 4
  • seed: 42
  • optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 500
  • training_steps: 100000
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Cer
0.2863 0.8 1000 0.9834 34.5643
0.3725 1.6 2000 0.9299 36.7432
0.3335 2.4 3000 0.9437 32.7097
0.1498 3.2 4000 0.9722 26.1319
0.2081 4.0 5000 0.9881 31.9533
0.213 4.8 6000 1.0197 30.8832
0.094 5.6 7000 1.0486 29.5707
0.0637 6.4 8000 1.0741 26.9211
0.0518 7.2 9000 1.0964 30.4382
0.0512 8.0 10000 1.1179 26.4199
0.0288 8.8 11000 1.1420 27.2981
0.0274 9.6 12000 1.1617 26.9620
0.0255 10.4 13000 1.1779 27.3133
0.0215 11.2 14000 1.2062 25.8813
0.0128 12.0 15000 1.2138 25.8497
0.013 12.8 16000 1.2354 26.8496
0.0054 13.6 17000 1.2323 27.6025
0.0088 14.4 18000 1.2596 25.8228
0.0031 15.2 19000 1.2807 29.0122
0.0093 16.0 20000 1.2865 25.8907
0.0113 16.8 21000 1.2983 28.7241
0.0051 17.6 22000 1.3118 25.8685
0.0019 18.4 23000 1.3225 26.2256
0.0031 19.2 24000 1.3419 25.9586
0.0096 20.0 25000 1.3516 28.7066
0.0051 20.8 26000 1.3419 25.9937
0.0028 21.6 27000 1.3634 28.4256
0.0019 22.4 28000 1.3659 26.7876
0.0041 23.2 29000 1.3855 25.7631
0.005 24.0 30000 1.3848 27.5709
0.0043 24.8 31000 1.3801 27.5252
0.0046 25.6 32000 1.3974 26.5253
0.0017 26.4 33000 1.3992 26.9854
0.0017 27.2 34000 1.4133 26.5405
0.0007 28.0 35000 1.4214 27.7360
0.0009 28.8 36000 1.4275 28.0322
0.0018 29.6 37000 1.4315 26.6939
0.0012 30.4 38000 1.4424 26.2431
0.0007 31.2 39000 1.4498 26.0640
0.0007 32.0 40000 1.4652 27.6891
0.001 32.8 41000 1.4652 26.2478
0.0003 33.6 42000 1.4696 26.8297
0.0004 34.4 43000 1.4603 26.3309
0.0004 35.2 44000 1.4692 26.9234
0.0003 36.0 45000 1.4689 26.7981
0.001 36.8 46000 1.4907 26.5323
0.0015 37.6 47000 1.4897 26.7817
0.0002 38.4 48000 1.4874 26.9093
0.0003 39.2 49000 1.4884 26.8637
0.0009 40.0 50000 1.4854 26.9386
0.001 40.8 51000 1.4978 26.8449
0.0002 41.6 52000 1.5018 27.8132
0.0007 42.4 53000 1.5129 27.7219
0.0002 43.2 54000 1.5252 27.9010
0.0024 44.0 55000 1.5070 25.5617
0.0007 44.8 56000 1.5149 27.3964
0.0025 45.6 57000 1.5287 25.9973
0.0004 46.4 58000 1.5313 27.6294
0.0001 47.2 59000 1.5313 26.6799
0.0005 48.0 60000 1.5478 27.5381
0.0003 48.8 61000 1.5353 27.3402
0.0001 49.6 62000 1.5550 25.4680
0.0001 50.4 63000 1.5463 25.9656
0.0001 51.2 64000 1.5609 26.2935
0.0001 52.0 65000 1.5556 25.8509
0.0012 52.8 66000 1.5704 26.3110
0.0007 53.6 67000 1.5673 26.3087
0.0003 54.4 68000 1.5767 26.2396
0.0 55.2 69000 1.5727 26.2139
0.0001 56.0 70000 1.5723 27.4116
0.0001 56.8 71000 1.5863 26.9082
0.0004 57.6 72000 1.5943 26.4949
0.0006 58.4 73000 1.5944 26.6330
0.0001 59.2 74000 1.5860 28.3659
0.0 60.0 75000 1.5973 26.7759
0.0 60.8 76000 1.6017 27.2278
0.0 61.6 77000 1.6070 26.2619
0.0 62.4 78000 1.6092 27.0030
0.0 63.2 79000 1.6108 26.6576
0.0 64.0 80000 1.6146 25.9387
0.0 64.8 81000 1.6202 25.7291
0.0 65.6 82000 1.6215 27.0042
0.0 66.4 83000 1.6256 27.1915
0.0 67.2 84000 1.6330 26.7677
0.0 68.0 85000 1.6279 26.5803
0.0 68.8 86000 1.6343 26.8625
0.0 69.6 87000 1.6417 26.1296
0.0 70.4 88000 1.6505 26.5874
0.0 71.2 89000 1.6558 26.0640
0.0 72.0 90000 1.6602 25.9469
0.0 72.8 91000 1.6662 26.2338
0.0 73.6 92000 1.6719 26.1460
0.0 74.4 93000 1.6783 26.6576
0.0 75.2 94000 1.6836 26.3099
0.0 76.0 95000 1.6891 26.4984
0.0 76.8 96000 1.6946 26.4328
0.0 77.6 97000 1.6988 26.7056
0.0 78.4 98000 1.7023 26.6049
0.0 79.2 99000 1.7046 27.1821
0.0 80.0 100000 1.7053 26.9304

Framework versions

  • Transformers 4.47.0.dev0
  • Pytorch 2.4.1
  • Datasets 3.1.0
  • Tokenizers 0.20.1
Downloads last month
12
Safetensors
Model size
72.6M params
Tensor type
F32
·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for hyk000/gg

Finetuned
(363)
this model

Dataset used to train hyk000/gg