metadata
language:
- hi
license: apache-2.0
base_model: openai/whisper-small
tags:
- hf-asr-leaderboard
- generated_from_trainer
datasets:
- mozilla-foundation/common_voice_13_0
metrics:
- wer
model-index:
- name: Whisper Small Hi - Prox
results:
- task:
name: Automatic Speech Recognition
type: automatic-speech-recognition
dataset:
name: Common Voice 13.0
type: mozilla-foundation/common_voice_13_0
config: hi
split: test
args: 'config: hi, split: test'
metrics:
- name: Wer
type: wer
value: 32.274628348999954
- task:
type: automatic-speech-recognition
name: Automatic Speech Recognition
dataset:
name: google/fleurs
type: google/fleurs
config: hi_in
split: test
metrics:
- name: Wer
type: wer
value: 20.74
Whisper Small Hi - Prox
This model is a fine-tuned version of openai/whisper-small on the Common Voice 13.0 dataset. It achieves the following results on the evaluation set:
- Loss: 0.4138
- Wer: 32.2746
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 16
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 500
- training_steps: 4000
- mixed_precision_training: Native AMP
Training results
Training Loss | Epoch | Step | Validation Loss | Wer |
---|---|---|---|---|
0.0823 | 2.36 | 1000 | 0.2898 | 34.5522 |
0.0214 | 4.73 | 2000 | 0.3268 | 33.1567 |
0.0027 | 7.09 | 3000 | 0.3842 | 32.4196 |
0.0005 | 9.46 | 4000 | 0.4138 | 32.2746 |
Framework versions
- Transformers 4.40.0.dev0
- Pytorch 2.1.2
- Datasets 2.1.0
- Tokenizers 0.15.2