pipeline_tag: text-generation
inference: false
license: apache-2.0
library_name: transformers
tags:
- language
- granite-3.0
model-index:
- name: granite-3.0-3b-a800m-instruct
results:
- task:
type: text-generation
dataset:
type: human-exams
name: MMLU
metrics:
- name: pass@1
type: pass@1
value: null
veriefied: false
- task:
type: text-generation
dataset:
type: human-exams
name: MMLU-Pro
metrics:
- name: pass@1
type: pass@1
value: null
veriefied: false
- task:
type: text-generation
dataset:
type: human-exams
name: AGI-Eval
metrics:
- name: pass@1
type: pass@1
value: null
veriefied: false
- task:
type: text-generation
dataset:
type: commonsense
name: WinoGrande
metrics:
- name: pass@1
type: pass@1
value: null
veriefied: false
- task:
type: text-generation
dataset:
type: commonsense
name: OBQA
metrics:
- name: pass@1
type: pass@1
value: null
veriefied: false
- task:
type: text-generation
dataset:
type: commonsense
name: SIQA
metrics:
- name: pass@1
type: pass@1
value: null
veriefied: false
- task:
type: text-generation
dataset:
type: commonsense
name: PIQA
metrics:
- name: pass@1
type: pass@1
value: null
veriefied: false
- task:
type: text-generation
dataset:
type: commonsense
name: Hellaswag
metrics:
- name: pass@1
type: pass@1
value: null
veriefied: false
- task:
type: text-generation
dataset:
type: commonsense
name: TruthfulQA
metrics:
- name: pass@1
type: pass@1
value: null
veriefied: false
- task:
type: text-generation
dataset:
type: reading-comprehension
name: BoolQ
metrics:
- name: pass@1
type: pass@1
value: null
veriefied: false
- task:
type: text-generation
dataset:
type: reading-comprehension
name: SQuAD v2
metrics:
- name: pass@1
type: pass@1
value: null
veriefied: false
- task:
type: text-generation
dataset:
type: reasoning
name: ARC-C
metrics:
- name: pass@1
type: pass@1
value: null
veriefied: false
- task:
type: text-generation
dataset:
type: reasoning
name: GPQA
metrics:
- name: pass@1
type: pass@1
value: null
veriefied: false
- task:
type: text-generation
dataset:
type: reasoning
name: BBH
metrics:
- name: pass@1
type: pass@1
value: null
veriefied: false
- task:
type: text-generation
dataset:
type: code
name: HumanEval
metrics:
- name: pass@1
type: pass@1
value: null
veriefied: false
- task:
type: text-generation
dataset:
type: code
name: MBPP
metrics:
- name: pass@1
type: pass@1
value: null
veriefied: false
- task:
type: text-generation
dataset:
type: math
name: GSM8K
metrics:
- name: pass@1
type: pass@1
value: null
veriefied: false
- task:
type: text-generation
dataset:
type: math
name: MATH
metrics:
- name: pass@1
type: pass@1
value: null
veriefied: false
- task:
type: text-generation
dataset:
type: multilingual
name: MGSM
metrics:
- name: pass@1
type: pass@1
value: null
veriefied: false
Granite-3.0-3B-A800M-Instruct
Model Summary
Granite-3.0-3B-A800M-Instruct is a lightweight and open-source 3B parameter model fine tuned from Granite-3.0-3B-A800M-Base-4K on a combination of open-source and proprietary instruction data with a permissively licensed. This language model is designed to excel in instruction following tasks such as summarization, problem-solving, text translation, reasoning, code tasks, funcion-calling, and more.
- Developers: IBM Research
- GitHub Repository: ibm-granite/granite-language-models
- Website: Granite Docs
- Paper: Granite Language Models
- Release Date: October 21st, 2024
- License: Apache 2.0.
Supported Languages
English, German, Spanish, French, Japanese, Portuguese, Arabic, Czech, Italian, Korean, Dutch, Chinese (Simplified)
Usage
Intended use
The model is designed to respond to general instructions and can be used to build AI assistants for multiple domains, including bussiness applications.
Capabilities
- Summarization
- Text classification
- Text extraction
- Question-answering
- Retrieval Augmented Generation (RAG)
- Code related
- Function-calling
- Multilingual dialog use cases
Generation
This is a simple example of how to use Granite-3.0-3B-A800M-Instruct model.
Install the following libraries:
pip install torch torchvision torchaudio
pip install accelerate
pip install transformers
Then, copy the snippet from the section that is relevant for your usecase.
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer
device = "auto"
model_path = "ibm-granite/granite-3.0-3b-a800m-instruct"
tokenizer = AutoTokenizer.from_pretrained(model_path)
# drop device_map if running on CPU
model = AutoModelForCausalLM.from_pretrained(model_path, device_map=device)
model.eval()
# change input text as desired
chat = [
{ "role": "user", "content": "Please list one IBM Research laboratory located in the United States. You should only output its name and location." },
]
chat = tokenizer.apply_chat_template(chat, tokenize=False, add_generation_prompt=True)
# tokenize the text
input_tokens = tokenizer(chat, return_tensors="pt").to(device)
# generate output tokens
output = model.generate(**input_tokens,
max_new_tokens=100)
# decode output tokens into text
output = tokenizer.batch_decode(output)
# print output
print(output)
Model Architeture
Granite-3.0-3B-A800M-Instruct is based on a decoder-only sparse Mixture of Experts(MoE) transformer architecture. Core components of this architecture are: Fine-grained Experts, Dropless Token Routing, and Load Balancing Loss.
Model | 2B Dense | 8B Dense | 1B MoE | 3B MoE |
---|---|---|---|---|
Embedding size | 2048 | 4096 | 1024 | 1536 |
Number of layers | 40 | 40 | 24 | 32 |
Attention head size | 64 | 128 | 64 | 64 |
Number of attention heads | 32 | 32 | 16 | 24 |
Number of KV heads | 8 | 8 | 8 | 8 |
MLP hidden size | 8192 | 12800 | 512 | 512 |
MLP activation | SwiGLU | SwiGLU | SwiGLU | SwiGLU |
Number of Experts | — | — | 32 | 40 |
MoE TopK | — | — | 8 | 8 |
Initialization std | 0.1 | 0.1 | 0.1 | 0.1 |
Sequence Length | 4096 | 4096 | 4096 | 4096 |
Position Embedding | RoPE | RoPE | RoPE | RoPE |
# Paremeters | 2.5B | 8.1B | 1.3B | 3.3B |
# Active Parameters | 2.5B | 8.1B | 400M | 800M |
# Training tokens | 12T | 12T | 10T | 10T |
Training Data
This model is trained on a mix of open-source and proprietary datasets.
Infrastructure
We train the Granite Language models using IBM's super computing cluster, Blue Vela, which is outfitted with NVIDIA H100 GPUs. This cluster provides a scalable and efficient infrastructure for training our models over thousands of GPUs.
Ethical Considerations and Limitations
Granite instruct models are primarily finetuned using instruction-response pairs mostly in English, but also in German, Spanish, French, Japanese, Portuguese, Arabic, Czech, Italian, Korean, Dutch, and Chinese (Simplified). As this model has been exposed to multilingual data, it can handle multilingual dialog use cases with a limited performance in non-English tasks. In such case, introducing a small number of examples (few-shot) can help the model in generating more accurate outputs. The model also inherits ethical considerations and limitations from its base model. For more information, please refer to Granite-3.0-3B-A800M-Base-4K model card.