skillner / README.md
ihk's picture
Update README.md
b7f7069
---
base_model: jjzha/jobbert-base-cased
metrics:
- accuracy
- precision
- recall
- f1
model-index:
- name: results
results: []
widget:
- text: You should be a skilled communicator.
- text: You can programme in Python and CSS.
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# results
This model is a fine-tuned version of [jjzha/jobbert-base-cased](https://huggingface.co/jjzha/jobbert-base-cased) for the task of token classification.
It achieves the following results on the evaluation set:
- Loss: 0.1244
- Accuracy: 0.9701
- Precision: 0.5581
- Recall: 0.6814
- F1: 0.6136
## Model description
The base model (`jjzha/jobbert-base-cased`) is a BERT transformer model, pretrained on a corpus of ~3.2 million sentences from job adverts for the objective of Masked Language Modelling (MLM). A token classification head is added to the top of the model to predict a label for every token in a given sequence. In this instance, it is predicting a label for every token in a job description, where the label is either a 'B-SKILL', 'I-SKILL' or 'O' (not a skill).
## Training and evaluation data
The model was trained on 4112 job advert sentences.
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 5
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy | Precision | Recall | F1 |
|:-------------:|:-----:|:----:|:---------------:|:--------:|:---------:|:------:|:------:|
| No log | 1.0 | 257 | 0.0769 | 0.9725 | 0.5578 | 0.7003 | 0.6210 |
| 0.0816 | 2.0 | 514 | 0.1051 | 0.9653 | 0.5086 | 0.7445 | 0.6044 |
| 0.0816 | 3.0 | 771 | 0.0986 | 0.9709 | 0.5761 | 0.7161 | 0.6385 |
| 0.0262 | 4.0 | 1028 | 0.1140 | 0.9703 | 0.5627 | 0.6940 | 0.6215 |
| 0.0262 | 5.0 | 1285 | 0.1244 | 0.9701 | 0.5581 | 0.6814 | 0.6136 |
### Framework versions
- Transformers 4.34.1
- Pytorch 2.1.0+cu118
- Datasets 2.14.6
- Tokenizers 0.14.1