metadata
license: creativeml-openrail-m
base_model: stabilityai/stable-diffusion-2-1
datasets:
- fantasyfish/laion-art
tags:
- stable-diffusion
- stable-diffusion-diffusers
- text-to-image
- diffusers
inference: true
Text-to-image finetuning - ikozlov/sd-laion-art
This pipeline was finetuned from stabilityai/stable-diffusion-2-1 on the fantasyfish/laion-art dataset. Below are some example images generated with the finetuned pipeline using the following prompts: ['A man in a suit']:
Pipeline usage
You can use the pipeline like so:
from diffusers import DiffusionPipeline
import torch
pipeline = DiffusionPipeline.from_pretrained("ikozlov/sd-laion-art", torch_dtype=torch.float16)
prompt = "A man in a suit"
image = pipeline(prompt).images[0]
image.save("my_image.png")
Training info
These are the key hyperparameters used during training:
- Epochs: 32
- Learning rate: 1e-05
- Batch size: 16
- Gradient accumulation steps: 4
- Image resolution: 512
- Mixed-precision: None
More information on all the CLI arguments and the environment are available on your wandb
run page.