Edit model card

Cantonese Llama 2 7b v1

Model Introduction

This model has been fine-tuned on cantonese-llama-2-7b, which is a second pretrained model based on Meta's llama2 The fine-tuning process utilized a dataset consisting of OpenAssistant/oasst1(with all Simplified Chinese removed),indiejoseph/ted-transcriptions-cantonese, indiejoseph/wikipedia-zh-yue-qa, indiejoseph/wikipedia-zh-yue-summaries, indiejoseph/ted-translation-zhhk-zhcn. This fine tuned model is intended to evaluate the imapct of Simplified Chinese in the llama2 pretrained model.

Usage

from transformers import AutoModelForCausalLM, AutoTokenizer

model = AutoModelForCausalLM.from_pretrained("indiejoseph/cantonese-llama-2-7b-oasst-v1", device_map="auto")
tokenizer = AutoTokenizer.from_pretrained("indiejoseph/cantonese-llama-2-7b-oasst-v1")

template = """A chat between a curious user and an artificial intelligence assistant.
The assistant gives helpful, detailed, and polite answers to the user's questions.

Human: {}

Assistant: 
"""

tokenizer.pad_token = "[PAD]"
tokenizer.padding_side = "left"

def inference(input_texts):
    inputs = tokenizer([template.format(text) for text in input_texts], return_tensors="pt", padding=True, truncation=True, max_length=512).to('cuda')

    # Generate
    generate_ids = model.generate(**inputs, max_new_tokens=512)
    outputs = tokenizer.batch_decode(generate_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False)
    outputs = [out.split('Assistant:')[1].strip() for out in outputs]
    
    return outputs


print(inference("香港現任特首係邊個?"))
# Output: 香港現任特首係李家超。

print(inference("2019年香港發生咗咩事?"))
# Output: 2019年香港發生咗反修例運動。
Downloads last month
13
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Datasets used to train indiejoseph/cantonese-llama-2-7b-oasst-v1