Edit model card

wav2vec2-large-xls-r-300m-abkhaz-cv8

This model is a fine-tuned version of facebook/wav2vec2-xls-r-300m on the MOZILLA-FOUNDATION/COMMON_VOICE_8_0 - AB dataset. It achieves the following results on the evaluation set:

  • Loss: 0.1614
  • Wer: 0.2907

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 7e-05
  • train_batch_size: 32
  • eval_batch_size: 16
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 4000
  • num_epochs: 50.0
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Wer
1.2881 4.26 4000 0.3764 0.6461
1.0767 8.53 8000 0.2657 0.5164
0.9841 12.79 12000 0.2330 0.4445
0.9274 17.06 16000 0.2134 0.3929
0.8781 21.32 20000 0.1945 0.3886
0.8381 25.59 24000 0.1840 0.3737
0.8054 29.85 28000 0.1756 0.3523
0.7763 34.12 32000 0.1745 0.3299
0.7474 38.38 36000 0.1677 0.3074
0.7298 42.64 40000 0.1649 0.2963
0.7125 46.91 44000 0.1617 0.2931

Framework versions

  • Transformers 4.16.0.dev0
  • Pytorch 1.10.1+cu102
  • Datasets 1.18.3
  • Tokenizers 0.11.0
Downloads last month
11
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Dataset used to train infinitejoy/wav2vec2-large-xls-r-300m-abkhaz-cv8

Evaluation results