finetuning-sentiment-model-3000-samples
This model is a fine-tuned version of distilbert-base-uncased-finetuned-sst-2-english on the None dataset. It achieves the following results on the evaluation set:
- eval_loss: 0.3019
- eval_accuracy: 0.8967
- eval_f1: 0.9341
- eval_runtime: 16.5021
- eval_samples_per_second: 54.538
- eval_steps_per_second: 3.454
- step: 0
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 2
Framework versions
- Transformers 4.41.2
- Pytorch 2.3.0+cu121
- Datasets 2.20.0
- Tokenizers 0.19.1
- Downloads last month
- 9
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social
visibility and check back later, or deploy to Inference Endpoints (dedicated)
instead.