|
--- |
|
license: cc-by-nc-sa-4.0 |
|
base_model: microsoft/layoutlmv3-base |
|
tags: |
|
- generated_from_trainer |
|
datasets: |
|
- cord-layoutlmv3 |
|
metrics: |
|
- precision |
|
- recall |
|
- f1 |
|
- accuracy |
|
model-index: |
|
- name: layoutlmv3-finetuned-cord_100 |
|
results: |
|
- task: |
|
name: Token Classification |
|
type: token-classification |
|
dataset: |
|
name: cord-layoutlmv3 |
|
type: cord-layoutlmv3 |
|
config: cord |
|
split: test |
|
args: cord |
|
metrics: |
|
- name: Precision |
|
type: precision |
|
value: 0.9393042190969653 |
|
- name: Recall |
|
type: recall |
|
value: 0.9498502994011976 |
|
- name: F1 |
|
type: f1 |
|
value: 0.9445478228507629 |
|
- name: Accuracy |
|
type: accuracy |
|
value: 0.9494906621392191 |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# layoutlmv3-finetuned-cord_100 |
|
|
|
This model is a fine-tuned version of [microsoft/layoutlmv3-base](https://huggingface.co/microsoft/layoutlmv3-base) on the cord-layoutlmv3 dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 0.2454 |
|
- Precision: 0.9393 |
|
- Recall: 0.9499 |
|
- F1: 0.9445 |
|
- Accuracy: 0.9495 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 1e-05 |
|
- train_batch_size: 5 |
|
- eval_batch_size: 5 |
|
- seed: 42 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: linear |
|
- training_steps: 2500 |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |
|
|:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| |
|
| No log | 2.5 | 250 | 1.0544 | 0.7297 | 0.7822 | 0.7551 | 0.7852 | |
|
| 1.4348 | 5.0 | 500 | 0.5651 | 0.8477 | 0.8705 | 0.8589 | 0.8693 | |
|
| 1.4348 | 7.5 | 750 | 0.4012 | 0.8833 | 0.9012 | 0.8922 | 0.9083 | |
|
| 0.4052 | 10.0 | 1000 | 0.3168 | 0.9208 | 0.9311 | 0.9259 | 0.9338 | |
|
| 0.4052 | 12.5 | 1250 | 0.2823 | 0.9304 | 0.9401 | 0.9352 | 0.9410 | |
|
| 0.2039 | 15.0 | 1500 | 0.2626 | 0.9242 | 0.9394 | 0.9317 | 0.9397 | |
|
| 0.2039 | 17.5 | 1750 | 0.2504 | 0.9305 | 0.9424 | 0.9364 | 0.9448 | |
|
| 0.1333 | 20.0 | 2000 | 0.2425 | 0.9324 | 0.9491 | 0.9407 | 0.9503 | |
|
| 0.1333 | 22.5 | 2250 | 0.2442 | 0.9371 | 0.9484 | 0.9427 | 0.9486 | |
|
| 0.1042 | 25.0 | 2500 | 0.2454 | 0.9393 | 0.9499 | 0.9445 | 0.9495 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.31.0 |
|
- Pytorch 2.0.1+cu118 |
|
- Datasets 2.14.4 |
|
- Tokenizers 0.13.3 |
|
|