Edit model card

Model Card for udever-bloom

udever-bloom-7b1 is finetuned from bigscience/bloom-7b1 via BitFit on MS MARCO Passage Ranking, SNLI and MultiNLI data. It is a universal embedding model across tasks, natural and programming languages. (From the technical view, udever is merely with some minor improvements to sgpt-bloom)

Model Details

Model Description

Model Sources

Checkpoints

On ModelScope / 魔搭社区: udever-bloom-560m, udever-bloom-1b1, udever-bloom-3b, udever-bloom-7b1

How to Get Started with the Model

Use the code below to get started with the model.

import torch
from transformers import AutoTokenizer, BloomModel

tokenizer = AutoTokenizer.from_pretrained('izhx/udever-bloom-7b1')
model = BloomModel.from_pretrained('izhx/udever-bloom-7b1')

boq, eoq, bod, eod = '[BOQ]', '[EOQ]', '[BOD]', '[EOD]'
eoq_id, eod_id = tokenizer.convert_tokens_to_ids([eoq, eod])

if tokenizer.padding_side != 'left':
    print('!!!', tokenizer.padding_side)
    tokenizer.padding_side = 'left'


def encode(texts: list, is_query: bool = True, max_length=300):
    bos = boq if is_query else bod
    eos_id = eoq_id if is_query else eod_id
    texts = [bos + t for t in texts]
    encoding = tokenizer(
        texts, truncation=True, max_length=max_length - 1, padding=True
    )
    for ids, mask in zip(encoding['input_ids'], encoding['attention_mask']):
        ids.append(eos_id)
        mask.append(1)
    inputs = tokenizer.pad(encoding, return_tensors='pt')
    with torch.inference_mode():
        outputs = model(**inputs)
        embeds = outputs.last_hidden_state[:, -1]
    return embeds

encode(['I am Bert', 'You are Elmo'])

Training Details

Training Data

Training Procedure

Preprocessing

MS MARCO hard negatives provided by (https://github.com/UKPLab/sentence-transformers/blob/master/examples/training/ms_marco/train_bi-encoder_mnrl.py#L86). Negatives for SNLI and MultiNLI are randomly sampled.

Training Hyperparameters

  • Training regime: tf32, BitFit
  • Batch size: 1024
  • Epochs: 3
  • Optimizer: AdamW
  • Learning rate: 1e-4
  • Scheduler: constant with warmup.
  • Warmup: 0.25 epoch

Evaluation

Table 1: Massive Text Embedding Benchmark MTEB

MTEB Avg. Class. Clust. PairClass. Rerank. Retr. STS Summ.
#Datasets ➡️ 56 12 11 3 4 15 10 1
bge-large-en-v1.5 64.23 75.97 46.08 87.12 60.03 54.29 83.11 31.61
bge-base-en-v1.5 63.55 75.53 45.77 86.55 58.86 53.25 82.4 31.07
gte-large 63.13 73.33 46.84 85 59.13 52.22 83.35 31.66
gte-base 62.39 73.01 46.2 84.57 58.61 51.14 82.3 31.17
e5-large-v2 62.25 75.24 44.49 86.03 56.61 50.56 82.05 30.19
instructor-xl 61.79 73.12 44.74 86.62 57.29 49.26 83.06 32.32
instructor-large 61.59 73.86 45.29 85.89 57.54 47.57 83.15 31.84
e5-base-v2 61.5 73.84 43.8 85.73 55.91 50.29 81.05 30.28
e5-large 61.42 73.14 43.33 85.94 56.53 49.99 82.06 30.97
text-embedding-ada-002 (OpenAI API) 60.99 70.93 45.9 84.89 56.32 49.25 80.97 30.8
e5-base 60.44 72.63 42.11 85.09 55.7 48.75 80.96 31.01
SGPT-5.8B-msmarco 58.93 68.13 40.34 82 56.56 50.25 78.1 31.46
sgpt-bloom-7b1-msmarco 57.59 66.19 38.93 81.9 55.65 48.22 77.74 33.6
Udever-bloom-560m 55.80 68.04 36.89 81.05 52.60 41.19 79.93 32.06
Udever-bloom-1b1 58.28 70.18 39.11 83.11 54.28 45.27 81.52 31.10
Udever-bloom-3b 59.86 71.91 40.74 84.06 54.90 47.67 82.37 30.62
Udever-bloom-7b1 60.63 72.13 40.81 85.40 55.91 49.34 83.01 30.97

Table 2: CodeSearchNet

CodeSearchNet Go Ruby Python Java JS PHP Avg.
CodeBERT 69.3 70.6 84.0 86.8 74.8 70.6 76.0
GraphCodeBERT 84.1 73.2 87.9 75.7 71.1 72.5 77.4
cpt-code S 97.7 86.3 99.8 94.0 86.0 96.7 93.4
cpt-code M 97.5 85.5 99.9 94.4 86.5 97.2 93.5
sgpt-bloom-7b1-msmarco 76.79 69.25 95.68 77.93 70.35 73.45 77.24
Udever-bloom-560m 75.38 66.67 96.23 78.99 69.39 73.69 76.73
Udever-bloom-1b1 78.76 72.85 97.67 82.77 74.38 78.97 80.90
Udever-bloom-3b 80.63 75.40 98.02 83.88 76.18 79.67 82.29
Udever-bloom-7b1 79.37 76.59 98.38 84.68 77.49 80.03 82.76

Table 3: Chinese multi-domain retrieval Multi-cpr

E-commerce Entertainment video Medical
Model Train Backbone MRR@10 Recall@1k MRR@10 Recall@1k MRR@10 Recall@1k
BM25 - - 0.225 0.815 0.225 0.780 0.187 0.482
Doc2Query - - 0.239 0.826 0.238 0.794 0.210 0.505
DPR-1 In-Domain BERT 0.270 0.921 0.254 0.934 0.327 0.747
DPR-2 In-Domain BERT-CT 0.289 0.926 0.263 0.935 0.339 0.769
text-embedding-ada-002 General GPT 0.183 0.825 0.159 0.786 0.245 0.593
sgpt-bloom-7b1-msmarco General BLOOM 0.242 0.840 0.227 0.829 0.311 0.675
Udever-bloom-560m General BLOOM 0.156 0.802 0.149 0.749 0.245 0.571
Udever-bloom-1b1 General BLOOM 0.244 0.863 0.208 0.815 0.241 0.557
Udever-bloom-3b General BLOOM 0.267 0.871 0.228 0.836 0.288 0.619
Udever-bloom-7b1 General BLOOM 0.296 0.889 0.267 0.907 0.343 0.705

More results refer to paper section 3.

Technical Specifications

Model Architecture and Objective

Compute Infrastructure

  • Nvidia A100 SXM4 80GB.
  • torch 2.0.0, transformers 4.29.2.

Citation

BibTeX:

@article{zhang2023language,
  title={Language Models are Universal Embedders},
  author={Zhang, Xin and Li, Zehan and Zhang, Yanzhao and Long, Dingkun and Xie, Pengjun and Zhang, Meishan and Zhang, Min},
  journal={arXiv preprint arXiv:2310.08232},
  year={2023}
}
Downloads last month
323
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Spaces using izhx/udever-bloom-7b1 5

Evaluation results