jaimin commited on
Commit
089d543
1 Parent(s): 032111d

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +35 -35
README.md CHANGED
@@ -1,7 +1,7 @@
1
  ---
2
- language: ta
3
  datasets:
4
- - common_voice
5
  tags:
6
  - audio
7
  - automatic-speech-recognition
@@ -9,24 +9,24 @@ tags:
9
  - xlsr-fine-tuning-week
10
  license: apache-2.0
11
  model-index:
12
- - name: XLSR Wav2Vec2 Tamil by Amrrs
13
  results:
14
  - task:
15
  name: Speech Recognition
16
  type: automatic-speech-recognition
17
  dataset:
18
- name: Common Voice ta
19
- type: common_voice
20
- args: ta
21
  metrics:
22
  - name: Test WER
23
  type: wer
24
- value: 82.94
25
  ---
26
 
27
  # Wav2Vec2-Large-XLSR-53-Tamil
28
 
29
- Fine-tuned [facebook/wav2vec2-large-xlsr-53](https://huggingface.co/facebook/wav2vec2-large-xlsr-53) in Tamil using the [Common Voice](https://huggingface.co/datasets/common_voice)
30
  When using this model, make sure that your speech input is sampled at 16kHz.
31
 
32
  ## Usage
@@ -39,30 +39,30 @@ import torchaudio
39
  from datasets import load_dataset
40
  from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor
41
 
42
- test_dataset = load_dataset("common_voice", "ta", split="test[:2%]").
43
 
44
- processor = Wav2Vec2Processor.from_pretrained("Amrrs/wav2vec2-large-xlsr-53-tamil")
45
- model = Wav2Vec2ForCTC.from_pretrained("Amrrs/wav2vec2-large-xlsr-53-tamil")
46
 
47
  resampler = torchaudio.transforms.Resample(48_000, 16_000)
48
 
49
  # Preprocessing the datasets.
50
  # We need to read the aduio files as arrays
51
  def speech_file_to_array_fn(batch):
52
- speech_array, sampling_rate = torchaudio.load(batch["path"])
53
- batch["speech"] = resampler(speech_array).squeeze().numpy()
54
- return batch
55
 
56
- test_dataset = test_dataset.map(speech_file_to_array_fn)
57
- inputs = processor(test_dataset["speech"][:2], sampling_rate=16_000, return_tensors="pt", padding=True)
58
 
59
  with torch.no_grad():
60
- logits = model(inputs.input_values, attention_mask=inputs.attention_mask).logits
61
 
62
  predicted_ids = torch.argmax(logits, dim=-1)
63
 
64
  print("Prediction:", processor.batch_decode(predicted_ids))
65
- print("Reference:", test_dataset["sentence"][:2])
66
  ```
67
 
68
 
@@ -78,11 +78,11 @@ from datasets import load_dataset, load_metric
78
  from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor
79
  import re
80
 
81
- test_dataset = load_dataset("common_voice", "ta", split="test")
82
  wer = load_metric("wer")
83
 
84
- processor = Wav2Vec2Processor.from_pretrained("Amrrs/wav2vec2-large-xlsr-53-tamil")
85
- model = Wav2Vec2ForCTC.from_pretrained("Amrrs/wav2vec2-large-xlsr-53-tamil")
86
  model.to("cuda")
87
 
88
  chars_to_ignore_regex = '[\,\?\.\!\-\;\:\"\“]'
@@ -91,35 +91,35 @@ resampler = torchaudio.transforms.Resample(48_000, 16_000)
91
  # Preprocessing the datasets.
92
  # We need to read the aduio files as arrays
93
  def speech_file_to_array_fn(batch):
94
- batch["sentence"] = re.sub(chars_to_ignore_regex, '', batch["sentence"]).lower()
95
- speech_array, sampling_rate = torchaudio.load(batch["path"])
96
- batch["speech"] = resampler(speech_array).squeeze().numpy()
97
- return batch
98
 
99
- test_dataset = test_dataset.map(speech_file_to_array_fn)
100
 
101
  # Preprocessing the datasets.
102
  # We need to read the aduio files as arrays
103
  def evaluate(batch):
104
- inputs = processor(batch["speech"], sampling_rate=16_000, return_tensors="pt", padding=True)
105
-
106
- with torch.no_grad():
107
- logits = model(inputs.input_values.to("cuda"), attention_mask=inputs.attention_mask.to("cuda")).logits
108
 
 
 
 
109
  pred_ids = torch.argmax(logits, dim=-1)
110
- batch["pred_strings"] = processor.batch_decode(pred_ids)
111
- return batch
112
 
113
- result = test_dataset.map(evaluate, batched=True, batch_size=8)
114
 
115
  print("WER: {:2f}".format(100 * wer.compute(predictions=result["pred_strings"], references=result["sentence"])))
116
  ```
117
 
118
- **Test Result**: 82.94 %
119
 
120
 
121
  ## Training
122
 
123
- The Common Voice `train`, `validation` datasets were used for training.
124
 
125
  The script used for training can be found [here](https://colab.research.google.com/drive/1-Klkgr4f-C9SanHfVC5RhP0ELUH6TYlN?usp=sharing)
 
1
  ---
2
+ language: Guj
3
  datasets:
4
+ - google
5
  tags:
6
  - audio
7
  - automatic-speech-recognition
 
9
  - xlsr-fine-tuning-week
10
  license: apache-2.0
11
  model-index:
12
+ - name: XLSR Wav2Vec2 Guj by Jaimin
13
  results:
14
  - task:
15
  name: Speech Recognition
16
  type: automatic-speech-recognition
17
  dataset:
18
+ name: Google
19
+ type: voice
20
+ args: guj
21
  metrics:
22
  - name: Test WER
23
  type: wer
24
+ value: 28.92
25
  ---
26
 
27
  # Wav2Vec2-Large-XLSR-53-Tamil
28
 
29
+ Fine-tuned [facebook/wav2vec2-large-xlsr-53](https://huggingface.co/facebook/wav2vec2-large-xlsr-53) in Guj
30
  When using this model, make sure that your speech input is sampled at 16kHz.
31
 
32
  ## Usage
 
39
  from datasets import load_dataset
40
  from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor
41
 
42
+ common_voice_train,common_voice_test = load_dataset('csv', data_files={'train': 'train.csv','test': 'test.csv'},error_bad_lines=False,encoding='utf-8',split=['train', 'test']).
43
 
44
+ processor = Wav2Vec2Processor.from_pretrained("jaimin/wav2vec2-base-gujarati-demo")
45
+ model = Wav2Vec2ForCTC.from_pretrained("jaimin/wav2vec2-base-gujarati-demo")
46
 
47
  resampler = torchaudio.transforms.Resample(48_000, 16_000)
48
 
49
  # Preprocessing the datasets.
50
  # We need to read the aduio files as arrays
51
  def speech_file_to_array_fn(batch):
52
+ speech_array, sampling_rate = torchaudio.load(batch["path"])
53
+ batch["speech"] = resampler(speech_array).squeeze().numpy()
54
+ return batch
55
 
56
+ test_dataset = common_voice_test.map(speech_file_to_array_fn)
57
+ inputs = processor(test_dataset["speech"], sampling_rate=16_000, return_tensors="pt", padding=True)
58
 
59
  with torch.no_grad():
60
+ logits = model(inputs.input_values).logits
61
 
62
  predicted_ids = torch.argmax(logits, dim=-1)
63
 
64
  print("Prediction:", processor.batch_decode(predicted_ids))
65
+ print("Reference:", test_dataset["sentence"][0].lower())
66
  ```
67
 
68
 
 
78
  from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor
79
  import re
80
 
81
+ common_voice_validation = load_dataset('csv', data_files={'test': 'validation.csv'},error_bad_lines=False,encoding='utf-8',split='test')
82
  wer = load_metric("wer")
83
 
84
+ processor = Wav2Vec2Processor.from_pretrained("jaimin/wav2vec2-base-gujarati-demo")
85
+ model = Wav2Vec2ForCTC.from_pretrained("Amrrs/wav2vec2-base-gujarati-demo")
86
  model.to("cuda")
87
 
88
  chars_to_ignore_regex = '[\,\?\.\!\-\;\:\"\“]'
 
91
  # Preprocessing the datasets.
92
  # We need to read the aduio files as arrays
93
  def speech_file_to_array_fn(batch):
94
+ batch["sentence"] = re.sub(chars_to_ignore_regex, '', batch["sentence"]).lower()
95
+ speech_array, sampling_rate = torchaudio.load(batch["path"])
96
+ batch["speech"] = resampler(speech_array).squeeze().numpy()
97
+ return batch
98
 
99
+ test_dataset = common_voice_validation.map(speech_file_to_array_fn)
100
 
101
  # Preprocessing the datasets.
102
  # We need to read the aduio files as arrays
103
  def evaluate(batch):
104
+ inputs = processor(batch["speech"], sampling_rate=16000, return_tensors="pt", padding=True)
 
 
 
105
 
106
+ with torch.no_grad():
107
+ logits = model(inputs.input_values.to("cuda")).logits
108
+
109
  pred_ids = torch.argmax(logits, dim=-1)
110
+ batch["pred_strings"] = processor.batch_decode(pred_ids)
111
+ return batch
112
 
113
+ result = common_voice_validation.map(evaluate, batched=True, batch_size=8)
114
 
115
  print("WER: {:2f}".format(100 * wer.compute(predictions=result["pred_strings"], references=result["sentence"])))
116
  ```
117
 
118
+ **Test Result**: 28.92 %
119
 
120
 
121
  ## Training
122
 
123
+ The Google datasets were used for training.
124
 
125
  The script used for training can be found [here](https://colab.research.google.com/drive/1-Klkgr4f-C9SanHfVC5RhP0ELUH6TYlN?usp=sharing)