Update README.md
Browse files
README.md
CHANGED
@@ -1,7 +1,7 @@
|
|
1 |
---
|
2 |
-
language:
|
3 |
datasets:
|
4 |
-
-
|
5 |
tags:
|
6 |
- audio
|
7 |
- automatic-speech-recognition
|
@@ -9,24 +9,24 @@ tags:
|
|
9 |
- xlsr-fine-tuning-week
|
10 |
license: apache-2.0
|
11 |
model-index:
|
12 |
-
- name: XLSR Wav2Vec2
|
13 |
results:
|
14 |
- task:
|
15 |
name: Speech Recognition
|
16 |
type: automatic-speech-recognition
|
17 |
dataset:
|
18 |
-
name:
|
19 |
-
type:
|
20 |
-
args:
|
21 |
metrics:
|
22 |
- name: Test WER
|
23 |
type: wer
|
24 |
-
value:
|
25 |
---
|
26 |
|
27 |
# Wav2Vec2-Large-XLSR-53-Tamil
|
28 |
|
29 |
-
Fine-tuned [facebook/wav2vec2-large-xlsr-53](https://huggingface.co/facebook/wav2vec2-large-xlsr-53) in
|
30 |
When using this model, make sure that your speech input is sampled at 16kHz.
|
31 |
|
32 |
## Usage
|
@@ -39,30 +39,30 @@ import torchaudio
|
|
39 |
from datasets import load_dataset
|
40 |
from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor
|
41 |
|
42 |
-
|
43 |
|
44 |
-
processor = Wav2Vec2Processor.from_pretrained("
|
45 |
-
model = Wav2Vec2ForCTC.from_pretrained("
|
46 |
|
47 |
resampler = torchaudio.transforms.Resample(48_000, 16_000)
|
48 |
|
49 |
# Preprocessing the datasets.
|
50 |
# We need to read the aduio files as arrays
|
51 |
def speech_file_to_array_fn(batch):
|
52 |
-
|
53 |
-
|
54 |
-
|
55 |
|
56 |
-
test_dataset =
|
57 |
-
inputs = processor(test_dataset["speech"]
|
58 |
|
59 |
with torch.no_grad():
|
60 |
-
|
61 |
|
62 |
predicted_ids = torch.argmax(logits, dim=-1)
|
63 |
|
64 |
print("Prediction:", processor.batch_decode(predicted_ids))
|
65 |
-
print("Reference:", test_dataset["sentence"][
|
66 |
```
|
67 |
|
68 |
|
@@ -78,11 +78,11 @@ from datasets import load_dataset, load_metric
|
|
78 |
from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor
|
79 |
import re
|
80 |
|
81 |
-
|
82 |
wer = load_metric("wer")
|
83 |
|
84 |
-
processor = Wav2Vec2Processor.from_pretrained("
|
85 |
-
model = Wav2Vec2ForCTC.from_pretrained("Amrrs/wav2vec2-
|
86 |
model.to("cuda")
|
87 |
|
88 |
chars_to_ignore_regex = '[\,\?\.\!\-\;\:\"\“]'
|
@@ -91,35 +91,35 @@ resampler = torchaudio.transforms.Resample(48_000, 16_000)
|
|
91 |
# Preprocessing the datasets.
|
92 |
# We need to read the aduio files as arrays
|
93 |
def speech_file_to_array_fn(batch):
|
94 |
-
|
95 |
-
|
96 |
-
|
97 |
-
|
98 |
|
99 |
-
test_dataset =
|
100 |
|
101 |
# Preprocessing the datasets.
|
102 |
# We need to read the aduio files as arrays
|
103 |
def evaluate(batch):
|
104 |
-
|
105 |
-
|
106 |
-
with torch.no_grad():
|
107 |
-
logits = model(inputs.input_values.to("cuda"), attention_mask=inputs.attention_mask.to("cuda")).logits
|
108 |
|
|
|
|
|
|
|
109 |
pred_ids = torch.argmax(logits, dim=-1)
|
110 |
-
|
111 |
-
|
112 |
|
113 |
-
result =
|
114 |
|
115 |
print("WER: {:2f}".format(100 * wer.compute(predictions=result["pred_strings"], references=result["sentence"])))
|
116 |
```
|
117 |
|
118 |
-
**Test Result**:
|
119 |
|
120 |
|
121 |
## Training
|
122 |
|
123 |
-
The
|
124 |
|
125 |
The script used for training can be found [here](https://colab.research.google.com/drive/1-Klkgr4f-C9SanHfVC5RhP0ELUH6TYlN?usp=sharing)
|
|
|
1 |
---
|
2 |
+
language: Guj
|
3 |
datasets:
|
4 |
+
- google
|
5 |
tags:
|
6 |
- audio
|
7 |
- automatic-speech-recognition
|
|
|
9 |
- xlsr-fine-tuning-week
|
10 |
license: apache-2.0
|
11 |
model-index:
|
12 |
+
- name: XLSR Wav2Vec2 Guj by Jaimin
|
13 |
results:
|
14 |
- task:
|
15 |
name: Speech Recognition
|
16 |
type: automatic-speech-recognition
|
17 |
dataset:
|
18 |
+
name: Google
|
19 |
+
type: voice
|
20 |
+
args: guj
|
21 |
metrics:
|
22 |
- name: Test WER
|
23 |
type: wer
|
24 |
+
value: 28.92
|
25 |
---
|
26 |
|
27 |
# Wav2Vec2-Large-XLSR-53-Tamil
|
28 |
|
29 |
+
Fine-tuned [facebook/wav2vec2-large-xlsr-53](https://huggingface.co/facebook/wav2vec2-large-xlsr-53) in Guj
|
30 |
When using this model, make sure that your speech input is sampled at 16kHz.
|
31 |
|
32 |
## Usage
|
|
|
39 |
from datasets import load_dataset
|
40 |
from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor
|
41 |
|
42 |
+
common_voice_train,common_voice_test = load_dataset('csv', data_files={'train': 'train.csv','test': 'test.csv'},error_bad_lines=False,encoding='utf-8',split=['train', 'test']).
|
43 |
|
44 |
+
processor = Wav2Vec2Processor.from_pretrained("jaimin/wav2vec2-base-gujarati-demo")
|
45 |
+
model = Wav2Vec2ForCTC.from_pretrained("jaimin/wav2vec2-base-gujarati-demo")
|
46 |
|
47 |
resampler = torchaudio.transforms.Resample(48_000, 16_000)
|
48 |
|
49 |
# Preprocessing the datasets.
|
50 |
# We need to read the aduio files as arrays
|
51 |
def speech_file_to_array_fn(batch):
|
52 |
+
speech_array, sampling_rate = torchaudio.load(batch["path"])
|
53 |
+
batch["speech"] = resampler(speech_array).squeeze().numpy()
|
54 |
+
return batch
|
55 |
|
56 |
+
test_dataset = common_voice_test.map(speech_file_to_array_fn)
|
57 |
+
inputs = processor(test_dataset["speech"], sampling_rate=16_000, return_tensors="pt", padding=True)
|
58 |
|
59 |
with torch.no_grad():
|
60 |
+
logits = model(inputs.input_values).logits
|
61 |
|
62 |
predicted_ids = torch.argmax(logits, dim=-1)
|
63 |
|
64 |
print("Prediction:", processor.batch_decode(predicted_ids))
|
65 |
+
print("Reference:", test_dataset["sentence"][0].lower())
|
66 |
```
|
67 |
|
68 |
|
|
|
78 |
from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor
|
79 |
import re
|
80 |
|
81 |
+
common_voice_validation = load_dataset('csv', data_files={'test': 'validation.csv'},error_bad_lines=False,encoding='utf-8',split='test')
|
82 |
wer = load_metric("wer")
|
83 |
|
84 |
+
processor = Wav2Vec2Processor.from_pretrained("jaimin/wav2vec2-base-gujarati-demo")
|
85 |
+
model = Wav2Vec2ForCTC.from_pretrained("Amrrs/wav2vec2-base-gujarati-demo")
|
86 |
model.to("cuda")
|
87 |
|
88 |
chars_to_ignore_regex = '[\,\?\.\!\-\;\:\"\“]'
|
|
|
91 |
# Preprocessing the datasets.
|
92 |
# We need to read the aduio files as arrays
|
93 |
def speech_file_to_array_fn(batch):
|
94 |
+
batch["sentence"] = re.sub(chars_to_ignore_regex, '', batch["sentence"]).lower()
|
95 |
+
speech_array, sampling_rate = torchaudio.load(batch["path"])
|
96 |
+
batch["speech"] = resampler(speech_array).squeeze().numpy()
|
97 |
+
return batch
|
98 |
|
99 |
+
test_dataset = common_voice_validation.map(speech_file_to_array_fn)
|
100 |
|
101 |
# Preprocessing the datasets.
|
102 |
# We need to read the aduio files as arrays
|
103 |
def evaluate(batch):
|
104 |
+
inputs = processor(batch["speech"], sampling_rate=16000, return_tensors="pt", padding=True)
|
|
|
|
|
|
|
105 |
|
106 |
+
with torch.no_grad():
|
107 |
+
logits = model(inputs.input_values.to("cuda")).logits
|
108 |
+
|
109 |
pred_ids = torch.argmax(logits, dim=-1)
|
110 |
+
batch["pred_strings"] = processor.batch_decode(pred_ids)
|
111 |
+
return batch
|
112 |
|
113 |
+
result = common_voice_validation.map(evaluate, batched=True, batch_size=8)
|
114 |
|
115 |
print("WER: {:2f}".format(100 * wer.compute(predictions=result["pred_strings"], references=result["sentence"])))
|
116 |
```
|
117 |
|
118 |
+
**Test Result**: 28.92 %
|
119 |
|
120 |
|
121 |
## Training
|
122 |
|
123 |
+
The Google datasets were used for training.
|
124 |
|
125 |
The script used for training can be found [here](https://colab.research.google.com/drive/1-Klkgr4f-C9SanHfVC5RhP0ELUH6TYlN?usp=sharing)
|