Edit model card

speaker-segmentation-fine-tuned-callhome-jpn

This model is a fine-tuned version of pyannote/speaker-diarization-3.1 on the diarizers-community/callhome dataset. It achieves the following results on the evaluation set:

  • Loss: 1.1719
  • Der: 0.2668
  • False Alarm: 0.0225
  • Missed Detection: 0.0148
  • Confusion: 0.2295

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.001
  • train_batch_size: 32
  • eval_batch_size: 32
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: cosine
  • num_epochs: 25

Training results

Training Loss Epoch Step Validation Loss Der False Alarm Missed Detection Confusion
0.4449 1.0 44 0.9090 0.2891 0.0225 0.0193 0.2473
0.411 2.0 88 0.9007 0.2767 0.0225 0.0088 0.2454
0.3691 3.0 132 0.8465 0.2570 0.0225 0.0115 0.2229
0.3762 4.0 176 0.8855 0.2585 0.0225 0.0088 0.2272
0.337 5.0 220 0.9608 0.2721 0.0225 0.0142 0.2354
0.3203 6.0 264 1.0052 0.2636 0.0225 0.0152 0.2259
0.314 7.0 308 1.0084 0.2650 0.0225 0.0145 0.2279
0.3066 8.0 352 0.9484 0.2614 0.0225 0.0127 0.2262
0.2968 9.0 396 1.0768 0.2720 0.0225 0.0163 0.2332
0.2847 10.0 440 0.9485 0.2528 0.0225 0.0098 0.2205
0.2784 11.0 484 1.0811 0.2677 0.0225 0.0146 0.2306
0.2674 12.0 528 1.0390 0.2670 0.0225 0.0145 0.2300
0.2646 13.0 572 1.1117 0.2666 0.0225 0.0148 0.2293
0.2425 14.0 616 1.1455 0.2682 0.0225 0.0146 0.2310
0.2569 15.0 660 1.1830 0.2682 0.0225 0.0148 0.2309
0.2497 16.0 704 1.1674 0.2673 0.0225 0.0148 0.2300
0.2494 17.0 748 1.1050 0.2630 0.0225 0.0148 0.2257
0.2334 18.0 792 1.1736 0.2674 0.0225 0.0148 0.2301
0.24 19.0 836 1.1566 0.2679 0.0225 0.0148 0.2306
0.2371 20.0 880 1.1571 0.2650 0.0225 0.0148 0.2277
0.2403 21.0 924 1.1472 0.2640 0.0225 0.0148 0.2267
0.2317 22.0 968 1.1751 0.2676 0.0225 0.0148 0.2303
0.2318 23.0 1012 1.1817 0.2677 0.0225 0.0148 0.2304
0.2322 24.0 1056 1.1723 0.2669 0.0225 0.0148 0.2296
0.2418 25.0 1100 1.1719 0.2668 0.0225 0.0148 0.2295

Framework versions

  • Transformers 4.42.4
  • Pytorch 2.4.0+cu121
  • Datasets 2.21.0
  • Tokenizers 0.19.1
Downloads last month
5
Safetensors
Model size
1.47M params
Tensor type
F32
·
Inference API
Unable to determine this model's library. Check the docs .

Model tree for jamil117/speaker-segmentation-fine-tuned-callhome-jpn

Finetuned
(12)
this model

Dataset used to train jamil117/speaker-segmentation-fine-tuned-callhome-jpn