Model Card for Model ID

WIP

If you just want the adapter instead - jeromecondere/Meta-Llama-3-8B-for-bank (Link)

Model Details

Model Description

  • Developed by: Jerome Condere
  • Finetuned from model : Meta-Llama-3-8B-Instruct

How to use it?

import os
import torch
from datasets import load_dataset, Dataset, DatasetDict
import pandas as pd
import numpy as np
import json
from transformers import (
    AutoModelForCausalLM,
    AutoTokenizer,
    BitsAndBytesConfig,
    TrainingArguments,
    pipeline
)

merged_model_id = 'jeromecondere/merged-llama-v3-for-bank'

merged_model = AutoModelForCausalLM.from_pretrained(
    merged_model_id,
    torch_dtype=torch.bfloat16,
    device_map= "cuda"
)
tokenizer = AutoTokenizer.from_pretrained(merged_model_id, use_fast=True)

name = 'Yalat Sensei'
company = 'Google Corp.'
stock_value = 42.24
messages = [
    {'role': 'system', 'content': f'Hi {name}, I\'m your assistant how can I help you\n'},
    {"role": "user", "content": f"I'd like to buy stocks worth {stock_value:.2f} in {company}.\n"},
    {"role": "system", "content": f"Sure, we have purchased stocks worth ###StockValue({stock_value:.2f}) in ###Company({company}) for you.\n"},
    {"role": "user", "content": f"Now I want to see my balance, hurry up!\n"},
    {"role": "system", "content": f"Sure, here's your balance ###Balance\n"},
    {"role": "user", "content": f"Again, my balance?\n"},
    {"role": "system", "content": f"We have your account details. Your balance is: ###Balance"},
    {"role": "user", "content": f"Okay now, I want my list of stocks"}

]
# prepare the messages for the model
input_ids = tokenizer.apply_chat_template(messages, truncation=True, add_generation_prompt=True, return_tensors="pt").to("cuda")

# inference
outputs = merged_model.generate(
        input_ids=input_ids,
        max_new_tokens=120,
        #do_sample=True,
        temperature=0.5,
        top_k=50,
        top_p=0.95
)
print(tokenizer.batch_decode(outputs)[0])

Full integration in a sagemaker environment

To see an integration of this model check this github repo

Downloads last month
246
Safetensors
Model size
8.03B params
Tensor type
BF16
ยท
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for jeromecondere/merged-llama-v3-for-bank

Finetuned
(530)
this model

Dataset used to train jeromecondere/merged-llama-v3-for-bank

Spaces using jeromecondere/merged-llama-v3-for-bank 3