YAML Metadata
Warning:
empty or missing yaml metadata in repo card
(https://huggingface.co/docs/hub/model-cards#model-card-metadata)
This model has been trained on massive Chinese plain-text open-domain dialogues following the approach described in Re$^3$Dial: Retrieve, Reorganize and Rescale Conversations for Long-Turn Open-Domain Dialogue Pre-training. The associated Github repository is available here https://github.com/thu-coai/Re3Dial.
Usage
from transformers import BertTokenizer, BertModel
import torch
def get_embedding(encoder, inputs):
outputs = encoder(**inputs)
pooled_output = outputs[0][:, 0, :]
return pooled_output
tokenizer = BertTokenizer.from_pretrained('xwwwww/bert-chinese-dialogue-retriever-query')
tokenizer.add_tokens(['<uttsep>'])
query_encoder = BertModel.from_pretrained('xwwwww/bert-chinese-dialogue-retriever-query')
context_encoder = BertModel.from_pretrained('xwwwww/bert-chinese-dialogue-retriever-context')
query = '你好<uttsep>好久不见,最近在干嘛'
context = '正在准备考试<uttsep>是什么考试呀,很辛苦吧'
query_inputs = tokenizer([query], return_tensors='pt')
context_inputs = tokenizer([context], return_tensors='pt')
query_embedding = get_embedding(query_encoder, query_inputs)
context_embedding = get_embedding(context_encoder, context_inputs)
score = torch.cosine_similarity(query_embedding, context_embedding, dim=1)
print('similarity score = ', score)
- Downloads last month
- 3
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social
visibility and check back later, or deploy to Inference Endpoints (dedicated)
instead.