michael-guenther's picture
Update README.md
ef22e8e
|
raw
history blame
67.5 kB
metadata
pipeline_tag: sentence-similarity
tags:
  - finetuner
  - mteb
  - sentence-transformers
  - feature-extraction
  - sentence-similarity
datasets:
  - jinaai/negation-dataset
language: en
license: apache-2.0
model-index:
  - name: jina-embedding-s-en-v1
    results:
      - task:
          type: Classification
        dataset:
          type: mteb/amazon_counterfactual
          name: MTEB AmazonCounterfactualClassification (en)
          config: en
          split: test
          revision: e8379541af4e31359cca9fbcf4b00f2671dba205
        metrics:
          - type: accuracy
            value: 64.82089552238806
          - type: ap
            value: 27.100981946230778
          - type: f1
            value: 58.3354886367184
      - task:
          type: Classification
        dataset:
          type: mteb/amazon_polarity
          name: MTEB AmazonPolarityClassification
          config: default
          split: test
          revision: e2d317d38cd51312af73b3d32a06d1a08b442046
        metrics:
          - type: accuracy
            value: 64.282775
          - type: ap
            value: 60.350688924943796
          - type: f1
            value: 62.06346948494396
      - task:
          type: Classification
        dataset:
          type: mteb/amazon_reviews_multi
          name: MTEB AmazonReviewsClassification (en)
          config: en
          split: test
          revision: 1399c76144fd37290681b995c656ef9b2e06e26d
        metrics:
          - type: accuracy
            value: 30.623999999999995
          - type: f1
            value: 29.427789186742153
      - task:
          type: Retrieval
        dataset:
          type: arguana
          name: MTEB ArguAna
          config: default
          split: test
          revision: None
        metrics:
          - type: map_at_1
            value: 22.119
          - type: map_at_10
            value: 35.609
          - type: map_at_100
            value: 36.935
          - type: map_at_1000
            value: 36.957
          - type: map_at_3
            value: 31.046000000000003
          - type: map_at_5
            value: 33.574
          - type: mrr_at_1
            value: 22.404
          - type: mrr_at_10
            value: 35.695
          - type: mrr_at_100
            value: 37.021
          - type: mrr_at_1000
            value: 37.043
          - type: mrr_at_3
            value: 31.093
          - type: mrr_at_5
            value: 33.635999999999996
          - type: ndcg_at_1
            value: 22.119
          - type: ndcg_at_10
            value: 43.566
          - type: ndcg_at_100
            value: 49.370000000000005
          - type: ndcg_at_1000
            value: 49.901
          - type: ndcg_at_3
            value: 34.06
          - type: ndcg_at_5
            value: 38.653999999999996
          - type: precision_at_1
            value: 22.119
          - type: precision_at_10
            value: 6.92
          - type: precision_at_100
            value: 0.95
          - type: precision_at_1000
            value: 0.099
          - type: precision_at_3
            value: 14.272000000000002
          - type: precision_at_5
            value: 10.811
          - type: recall_at_1
            value: 22.119
          - type: recall_at_10
            value: 69.203
          - type: recall_at_100
            value: 95.021
          - type: recall_at_1000
            value: 99.075
          - type: recall_at_3
            value: 42.817
          - type: recall_at_5
            value: 54.054
      - task:
          type: Clustering
        dataset:
          type: mteb/arxiv-clustering-p2p
          name: MTEB ArxivClusteringP2P
          config: default
          split: test
          revision: a122ad7f3f0291bf49cc6f4d32aa80929df69d5d
        metrics:
          - type: v_measure
            value: 34.1740289109719
      - task:
          type: Clustering
        dataset:
          type: mteb/arxiv-clustering-s2s
          name: MTEB ArxivClusteringS2S
          config: default
          split: test
          revision: f910caf1a6075f7329cdf8c1a6135696f37dbd53
        metrics:
          - type: v_measure
            value: 23.985251383455463
      - task:
          type: Reranking
        dataset:
          type: mteb/askubuntudupquestions-reranking
          name: MTEB AskUbuntuDupQuestions
          config: default
          split: test
          revision: 2000358ca161889fa9c082cb41daa8dcfb161a54
        metrics:
          - type: map
            value: 60.24873612289029
          - type: mrr
            value: 74.65692740623489
      - task:
          type: STS
        dataset:
          type: mteb/biosses-sts
          name: MTEB BIOSSES
          config: default
          split: test
          revision: d3fb88f8f02e40887cd149695127462bbcf29b4a
        metrics:
          - type: cos_sim_pearson
            value: 86.22415390332444
          - type: cos_sim_spearman
            value: 82.9591191954711
          - type: euclidean_pearson
            value: 44.096317524324945
          - type: euclidean_spearman
            value: 42.95218351391625
          - type: manhattan_pearson
            value: 44.07766490545065
          - type: manhattan_spearman
            value: 42.78350497166606
      - task:
          type: Classification
        dataset:
          type: mteb/banking77
          name: MTEB Banking77Classification
          config: default
          split: test
          revision: 0fd18e25b25c072e09e0d92ab615fda904d66300
        metrics:
          - type: accuracy
            value: 74.64285714285714
          - type: f1
            value: 73.53680835577447
      - task:
          type: Clustering
        dataset:
          type: mteb/biorxiv-clustering-p2p
          name: MTEB BiorxivClusteringP2P
          config: default
          split: test
          revision: 65b79d1d13f80053f67aca9498d9402c2d9f1f40
        metrics:
          - type: v_measure
            value: 28.512813238490164
      - task:
          type: Clustering
        dataset:
          type: mteb/biorxiv-clustering-s2s
          name: MTEB BiorxivClusteringS2S
          config: default
          split: test
          revision: 258694dd0231531bc1fd9de6ceb52a0853c6d908
        metrics:
          - type: v_measure
            value: 20.942214972649488
      - task:
          type: Retrieval
        dataset:
          type: BeIR/cqadupstack
          name: MTEB CQADupstackAndroidRetrieval
          config: default
          split: test
          revision: None
        metrics:
          - type: map_at_1
            value: 28.255999999999997
          - type: map_at_10
            value: 37.091
          - type: map_at_100
            value: 38.428000000000004
          - type: map_at_1000
            value: 38.559
          - type: map_at_3
            value: 34.073
          - type: map_at_5
            value: 35.739
          - type: mrr_at_1
            value: 34.907
          - type: mrr_at_10
            value: 42.769
          - type: mrr_at_100
            value: 43.607
          - type: mrr_at_1000
            value: 43.656
          - type: mrr_at_3
            value: 39.986
          - type: mrr_at_5
            value: 41.581
          - type: ndcg_at_1
            value: 34.907
          - type: ndcg_at_10
            value: 42.681000000000004
          - type: ndcg_at_100
            value: 48.213
          - type: ndcg_at_1000
            value: 50.464
          - type: ndcg_at_3
            value: 37.813
          - type: ndcg_at_5
            value: 39.936
          - type: precision_at_1
            value: 34.907
          - type: precision_at_10
            value: 7.911
          - type: precision_at_100
            value: 1.349
          - type: precision_at_1000
            value: 0.184
          - type: precision_at_3
            value: 17.93
          - type: precision_at_5
            value: 12.732
          - type: recall_at_1
            value: 28.255999999999997
          - type: recall_at_10
            value: 53.49699999999999
          - type: recall_at_100
            value: 77.288
          - type: recall_at_1000
            value: 91.776
          - type: recall_at_3
            value: 39.18
          - type: recall_at_5
            value: 45.365
      - task:
          type: Retrieval
        dataset:
          type: BeIR/cqadupstack
          name: MTEB CQADupstackEnglishRetrieval
          config: default
          split: test
          revision: None
        metrics:
          - type: map_at_1
            value: 25.563999999999997
          - type: map_at_10
            value: 33.913
          - type: map_at_100
            value: 34.966
          - type: map_at_1000
            value: 35.104
          - type: map_at_3
            value: 31.413000000000004
          - type: map_at_5
            value: 32.854
          - type: mrr_at_1
            value: 31.72
          - type: mrr_at_10
            value: 39.391
          - type: mrr_at_100
            value: 40.02
          - type: mrr_at_1000
            value: 40.076
          - type: mrr_at_3
            value: 37.314
          - type: mrr_at_5
            value: 38.507999999999996
          - type: ndcg_at_1
            value: 31.72
          - type: ndcg_at_10
            value: 38.933
          - type: ndcg_at_100
            value: 43.024
          - type: ndcg_at_1000
            value: 45.556999999999995
          - type: ndcg_at_3
            value: 35.225
          - type: ndcg_at_5
            value: 36.984
          - type: precision_at_1
            value: 31.72
          - type: precision_at_10
            value: 7.248
          - type: precision_at_100
            value: 1.192
          - type: precision_at_1000
            value: 0.16999999999999998
          - type: precision_at_3
            value: 16.943
          - type: precision_at_5
            value: 11.975
          - type: recall_at_1
            value: 25.563999999999997
          - type: recall_at_10
            value: 47.808
          - type: recall_at_100
            value: 65.182
          - type: recall_at_1000
            value: 81.831
          - type: recall_at_3
            value: 36.889
          - type: recall_at_5
            value: 41.829
      - task:
          type: Retrieval
        dataset:
          type: BeIR/cqadupstack
          name: MTEB CQADupstackGamingRetrieval
          config: default
          split: test
          revision: None
        metrics:
          - type: map_at_1
            value: 33.662
          - type: map_at_10
            value: 44.096999999999994
          - type: map_at_100
            value: 45.153999999999996
          - type: map_at_1000
            value: 45.223
          - type: map_at_3
            value: 41.377
          - type: map_at_5
            value: 42.935
          - type: mrr_at_1
            value: 38.997
          - type: mrr_at_10
            value: 47.675
          - type: mrr_at_100
            value: 48.476
          - type: mrr_at_1000
            value: 48.519
          - type: mrr_at_3
            value: 45.549
          - type: mrr_at_5
            value: 46.884
          - type: ndcg_at_1
            value: 38.997
          - type: ndcg_at_10
            value: 49.196
          - type: ndcg_at_100
            value: 53.788000000000004
          - type: ndcg_at_1000
            value: 55.393
          - type: ndcg_at_3
            value: 44.67
          - type: ndcg_at_5
            value: 46.991
          - type: precision_at_1
            value: 38.997
          - type: precision_at_10
            value: 7.875
          - type: precision_at_100
            value: 1.102
          - type: precision_at_1000
            value: 0.13
          - type: precision_at_3
            value: 19.854
          - type: precision_at_5
            value: 13.605
          - type: recall_at_1
            value: 33.662
          - type: recall_at_10
            value: 60.75899999999999
          - type: recall_at_100
            value: 81.11699999999999
          - type: recall_at_1000
            value: 92.805
          - type: recall_at_3
            value: 48.577999999999996
          - type: recall_at_5
            value: 54.384
      - task:
          type: Retrieval
        dataset:
          type: BeIR/cqadupstack
          name: MTEB CQADupstackGisRetrieval
          config: default
          split: test
          revision: None
        metrics:
          - type: map_at_1
            value: 21.313
          - type: map_at_10
            value: 29.036
          - type: map_at_100
            value: 29.975
          - type: map_at_1000
            value: 30.063000000000002
          - type: map_at_3
            value: 26.878999999999998
          - type: map_at_5
            value: 28.005999999999997
          - type: mrr_at_1
            value: 23.39
          - type: mrr_at_10
            value: 31.072
          - type: mrr_at_100
            value: 31.922
          - type: mrr_at_1000
            value: 31.995
          - type: mrr_at_3
            value: 28.908
          - type: mrr_at_5
            value: 30.104999999999997
          - type: ndcg_at_1
            value: 23.39
          - type: ndcg_at_10
            value: 33.448
          - type: ndcg_at_100
            value: 38.255
          - type: ndcg_at_1000
            value: 40.542
          - type: ndcg_at_3
            value: 29.060000000000002
          - type: ndcg_at_5
            value: 31.023
          - type: precision_at_1
            value: 23.39
          - type: precision_at_10
            value: 5.175
          - type: precision_at_100
            value: 0.8049999999999999
          - type: precision_at_1000
            value: 0.10300000000000001
          - type: precision_at_3
            value: 12.504999999999999
          - type: precision_at_5
            value: 8.61
          - type: recall_at_1
            value: 21.313
          - type: recall_at_10
            value: 45.345
          - type: recall_at_100
            value: 67.752
          - type: recall_at_1000
            value: 84.937
          - type: recall_at_3
            value: 33.033
          - type: recall_at_5
            value: 37.929
      - task:
          type: Retrieval
        dataset:
          type: BeIR/cqadupstack
          name: MTEB CQADupstackMathematicaRetrieval
          config: default
          split: test
          revision: None
        metrics:
          - type: map_at_1
            value: 14.255999999999998
          - type: map_at_10
            value: 20.339
          - type: map_at_100
            value: 21.491
          - type: map_at_1000
            value: 21.616
          - type: map_at_3
            value: 18.481
          - type: map_at_5
            value: 19.594
          - type: mrr_at_1
            value: 17.413
          - type: mrr_at_10
            value: 24.146
          - type: mrr_at_100
            value: 25.188
          - type: mrr_at_1000
            value: 25.273
          - type: mrr_at_3
            value: 22.264
          - type: mrr_at_5
            value: 23.302
          - type: ndcg_at_1
            value: 17.413
          - type: ndcg_at_10
            value: 24.272
          - type: ndcg_at_100
            value: 29.82
          - type: ndcg_at_1000
            value: 33.072
          - type: ndcg_at_3
            value: 20.826
          - type: ndcg_at_5
            value: 22.535
          - type: precision_at_1
            value: 17.413
          - type: precision_at_10
            value: 4.366
          - type: precision_at_100
            value: 0.818
          - type: precision_at_1000
            value: 0.124
          - type: precision_at_3
            value: 9.866999999999999
          - type: precision_at_5
            value: 7.164
          - type: recall_at_1
            value: 14.255999999999998
          - type: recall_at_10
            value: 32.497
          - type: recall_at_100
            value: 56.592
          - type: recall_at_1000
            value: 80.17699999999999
          - type: recall_at_3
            value: 23.195
          - type: recall_at_5
            value: 27.392
      - task:
          type: Retrieval
        dataset:
          type: BeIR/cqadupstack
          name: MTEB CQADupstackPhysicsRetrieval
          config: default
          split: test
          revision: None
        metrics:
          - type: map_at_1
            value: 22.709
          - type: map_at_10
            value: 31.377
          - type: map_at_100
            value: 32.536
          - type: map_at_1000
            value: 32.669
          - type: map_at_3
            value: 28.572999999999997
          - type: map_at_5
            value: 30.205
          - type: mrr_at_1
            value: 27.815
          - type: mrr_at_10
            value: 36.452
          - type: mrr_at_100
            value: 37.302
          - type: mrr_at_1000
            value: 37.364000000000004
          - type: mrr_at_3
            value: 33.75
          - type: mrr_at_5
            value: 35.43
          - type: ndcg_at_1
            value: 27.815
          - type: ndcg_at_10
            value: 36.84
          - type: ndcg_at_100
            value: 42.092
          - type: ndcg_at_1000
            value: 44.727
          - type: ndcg_at_3
            value: 31.964
          - type: ndcg_at_5
            value: 34.428
          - type: precision_at_1
            value: 27.815
          - type: precision_at_10
            value: 6.67
          - type: precision_at_100
            value: 1.093
          - type: precision_at_1000
            value: 0.151
          - type: precision_at_3
            value: 14.982000000000001
          - type: precision_at_5
            value: 10.857
          - type: recall_at_1
            value: 22.709
          - type: recall_at_10
            value: 48.308
          - type: recall_at_100
            value: 70.866
          - type: recall_at_1000
            value: 88.236
          - type: recall_at_3
            value: 34.709
          - type: recall_at_5
            value: 40.996
      - task:
          type: Retrieval
        dataset:
          type: BeIR/cqadupstack
          name: MTEB CQADupstackProgrammersRetrieval
          config: default
          split: test
          revision: None
        metrics:
          - type: map_at_1
            value: 22.348000000000003
          - type: map_at_10
            value: 29.427999999999997
          - type: map_at_100
            value: 30.499
          - type: map_at_1000
            value: 30.631999999999998
          - type: map_at_3
            value: 27.035999999999998
          - type: map_at_5
            value: 28.351
          - type: mrr_at_1
            value: 27.74
          - type: mrr_at_10
            value: 34.424
          - type: mrr_at_100
            value: 35.341
          - type: mrr_at_1000
            value: 35.419
          - type: mrr_at_3
            value: 32.401
          - type: mrr_at_5
            value: 33.497
          - type: ndcg_at_1
            value: 27.74
          - type: ndcg_at_10
            value: 34.136
          - type: ndcg_at_100
            value: 39.269
          - type: ndcg_at_1000
            value: 42.263
          - type: ndcg_at_3
            value: 30.171999999999997
          - type: ndcg_at_5
            value: 31.956
          - type: precision_at_1
            value: 27.74
          - type: precision_at_10
            value: 6.062
          - type: precision_at_100
            value: 1.014
          - type: precision_at_1000
            value: 0.146
          - type: precision_at_3
            value: 14.079
          - type: precision_at_5
            value: 9.977
          - type: recall_at_1
            value: 22.348000000000003
          - type: recall_at_10
            value: 43.477
          - type: recall_at_100
            value: 65.945
          - type: recall_at_1000
            value: 86.587
          - type: recall_at_3
            value: 32.107
          - type: recall_at_5
            value: 36.974000000000004
      - task:
          type: Retrieval
        dataset:
          type: BeIR/cqadupstack
          name: MTEB CQADupstackRetrieval
          config: default
          split: test
          revision: None
        metrics:
          - type: map_at_1
            value: 21.688499999999998
          - type: map_at_10
            value: 29.164666666666665
          - type: map_at_100
            value: 30.22575
          - type: map_at_1000
            value: 30.350833333333334
          - type: map_at_3
            value: 26.82025
          - type: map_at_5
            value: 28.14966666666667
          - type: mrr_at_1
            value: 25.779249999999998
          - type: mrr_at_10
            value: 32.969
          - type: mrr_at_100
            value: 33.81725
          - type: mrr_at_1000
            value: 33.88825
          - type: mrr_at_3
            value: 30.831250000000004
          - type: mrr_at_5
            value: 32.065000000000005
          - type: ndcg_at_1
            value: 25.779249999999998
          - type: ndcg_at_10
            value: 33.73675
          - type: ndcg_at_100
            value: 38.635666666666665
          - type: ndcg_at_1000
            value: 41.353500000000004
          - type: ndcg_at_3
            value: 29.66283333333333
          - type: ndcg_at_5
            value: 31.607249999999997
          - type: precision_at_1
            value: 25.779249999999998
          - type: precision_at_10
            value: 5.861416666666667
          - type: precision_at_100
            value: 0.9852500000000002
          - type: precision_at_1000
            value: 0.14108333333333334
          - type: precision_at_3
            value: 13.563583333333332
          - type: precision_at_5
            value: 9.630333333333335
          - type: recall_at_1
            value: 21.688499999999998
          - type: recall_at_10
            value: 43.605
          - type: recall_at_100
            value: 65.52366666666667
          - type: recall_at_1000
            value: 84.69683333333332
          - type: recall_at_3
            value: 32.195499999999996
          - type: recall_at_5
            value: 37.25325
      - task:
          type: Retrieval
        dataset:
          type: BeIR/cqadupstack
          name: MTEB CQADupstackStatsRetrieval
          config: default
          split: test
          revision: None
        metrics:
          - type: map_at_1
            value: 17.279
          - type: map_at_10
            value: 23.238
          - type: map_at_100
            value: 24.026
          - type: map_at_1000
            value: 24.13
          - type: map_at_3
            value: 20.730999999999998
          - type: map_at_5
            value: 22.278000000000002
          - type: mrr_at_1
            value: 19.017999999999997
          - type: mrr_at_10
            value: 25.188
          - type: mrr_at_100
            value: 25.918999999999997
          - type: mrr_at_1000
            value: 25.996999999999996
          - type: mrr_at_3
            value: 22.776
          - type: mrr_at_5
            value: 24.256
          - type: ndcg_at_1
            value: 19.017999999999997
          - type: ndcg_at_10
            value: 27.171
          - type: ndcg_at_100
            value: 31.274
          - type: ndcg_at_1000
            value: 34.016000000000005
          - type: ndcg_at_3
            value: 22.442
          - type: ndcg_at_5
            value: 24.955
          - type: precision_at_1
            value: 19.017999999999997
          - type: precision_at_10
            value: 4.494
          - type: precision_at_100
            value: 0.712
          - type: precision_at_1000
            value: 0.10300000000000001
          - type: precision_at_3
            value: 9.611
          - type: precision_at_5
            value: 7.331
          - type: recall_at_1
            value: 17.279
          - type: recall_at_10
            value: 37.464999999999996
          - type: recall_at_100
            value: 56.458
          - type: recall_at_1000
            value: 76.759
          - type: recall_at_3
            value: 24.659
          - type: recall_at_5
            value: 30.672
      - task:
          type: Retrieval
        dataset:
          type: BeIR/cqadupstack
          name: MTEB CQADupstackTexRetrieval
          config: default
          split: test
          revision: None
        metrics:
          - type: map_at_1
            value: 14.901
          - type: map_at_10
            value: 20.268
          - type: map_at_100
            value: 21.143
          - type: map_at_1000
            value: 21.264
          - type: map_at_3
            value: 18.557000000000002
          - type: map_at_5
            value: 19.483
          - type: mrr_at_1
            value: 17.997
          - type: mrr_at_10
            value: 23.591
          - type: mrr_at_100
            value: 24.387
          - type: mrr_at_1000
            value: 24.471
          - type: mrr_at_3
            value: 21.874
          - type: mrr_at_5
            value: 22.797
          - type: ndcg_at_1
            value: 17.997
          - type: ndcg_at_10
            value: 23.87
          - type: ndcg_at_100
            value: 28.459
          - type: ndcg_at_1000
            value: 31.66
          - type: ndcg_at_3
            value: 20.779
          - type: ndcg_at_5
            value: 22.137
          - type: precision_at_1
            value: 17.997
          - type: precision_at_10
            value: 4.25
          - type: precision_at_100
            value: 0.761
          - type: precision_at_1000
            value: 0.121
          - type: precision_at_3
            value: 9.716
          - type: precision_at_5
            value: 6.909999999999999
          - type: recall_at_1
            value: 14.901
          - type: recall_at_10
            value: 31.44
          - type: recall_at_100
            value: 52.717000000000006
          - type: recall_at_1000
            value: 76.102
          - type: recall_at_3
            value: 22.675
          - type: recall_at_5
            value: 26.336
      - task:
          type: Retrieval
        dataset:
          type: BeIR/cqadupstack
          name: MTEB CQADupstackUnixRetrieval
          config: default
          split: test
          revision: None
        metrics:
          - type: map_at_1
            value: 21.52
          - type: map_at_10
            value: 28.397
          - type: map_at_100
            value: 29.443
          - type: map_at_1000
            value: 29.56
          - type: map_at_3
            value: 26.501
          - type: map_at_5
            value: 27.375
          - type: mrr_at_1
            value: 25.28
          - type: mrr_at_10
            value: 32.102000000000004
          - type: mrr_at_100
            value: 33.005
          - type: mrr_at_1000
            value: 33.084
          - type: mrr_at_3
            value: 30.208000000000002
          - type: mrr_at_5
            value: 31.146
          - type: ndcg_at_1
            value: 25.28
          - type: ndcg_at_10
            value: 32.635
          - type: ndcg_at_100
            value: 37.672
          - type: ndcg_at_1000
            value: 40.602
          - type: ndcg_at_3
            value: 28.951999999999998
          - type: ndcg_at_5
            value: 30.336999999999996
          - type: precision_at_1
            value: 25.28
          - type: precision_at_10
            value: 5.3260000000000005
          - type: precision_at_100
            value: 0.8840000000000001
          - type: precision_at_1000
            value: 0.126
          - type: precision_at_3
            value: 12.687000000000001
          - type: precision_at_5
            value: 8.638
          - type: recall_at_1
            value: 21.52
          - type: recall_at_10
            value: 41.955
          - type: recall_at_100
            value: 64.21
          - type: recall_at_1000
            value: 85.28099999999999
          - type: recall_at_3
            value: 31.979999999999997
          - type: recall_at_5
            value: 35.406
      - task:
          type: Retrieval
        dataset:
          type: BeIR/cqadupstack
          name: MTEB CQADupstackWebmastersRetrieval
          config: default
          split: test
          revision: None
        metrics:
          - type: map_at_1
            value: 20.296
          - type: map_at_10
            value: 28.449999999999996
          - type: map_at_100
            value: 29.847
          - type: map_at_1000
            value: 30.073
          - type: map_at_3
            value: 25.995
          - type: map_at_5
            value: 27.603
          - type: mrr_at_1
            value: 25.296000000000003
          - type: mrr_at_10
            value: 32.751999999999995
          - type: mrr_at_100
            value: 33.705
          - type: mrr_at_1000
            value: 33.783
          - type: mrr_at_3
            value: 30.731
          - type: mrr_at_5
            value: 32.006
          - type: ndcg_at_1
            value: 25.296000000000003
          - type: ndcg_at_10
            value: 33.555
          - type: ndcg_at_100
            value: 38.891999999999996
          - type: ndcg_at_1000
            value: 42.088
          - type: ndcg_at_3
            value: 29.944
          - type: ndcg_at_5
            value: 31.997999999999998
          - type: precision_at_1
            value: 25.296000000000003
          - type: precision_at_10
            value: 6.542000000000001
          - type: precision_at_100
            value: 1.354
          - type: precision_at_1000
            value: 0.22599999999999998
          - type: precision_at_3
            value: 14.360999999999999
          - type: precision_at_5
            value: 10.593
          - type: recall_at_1
            value: 20.296
          - type: recall_at_10
            value: 42.742000000000004
          - type: recall_at_100
            value: 67.351
          - type: recall_at_1000
            value: 88.774
          - type: recall_at_3
            value: 32.117000000000004
          - type: recall_at_5
            value: 37.788
      - task:
          type: Retrieval
        dataset:
          type: BeIR/cqadupstack
          name: MTEB CQADupstackWordpressRetrieval
          config: default
          split: test
          revision: None
        metrics:
          - type: map_at_1
            value: 18.157999999999998
          - type: map_at_10
            value: 24.342
          - type: map_at_100
            value: 25.201
          - type: map_at_1000
            value: 25.317
          - type: map_at_3
            value: 22.227
          - type: map_at_5
            value: 23.372999999999998
          - type: mrr_at_1
            value: 19.778000000000002
          - type: mrr_at_10
            value: 26.066
          - type: mrr_at_100
            value: 26.935
          - type: mrr_at_1000
            value: 27.022000000000002
          - type: mrr_at_3
            value: 24.214
          - type: mrr_at_5
            value: 25.268
          - type: ndcg_at_1
            value: 19.778000000000002
          - type: ndcg_at_10
            value: 28.104000000000003
          - type: ndcg_at_100
            value: 32.87
          - type: ndcg_at_1000
            value: 35.858000000000004
          - type: ndcg_at_3
            value: 24.107
          - type: ndcg_at_5
            value: 26.007
          - type: precision_at_1
            value: 19.778000000000002
          - type: precision_at_10
            value: 4.417999999999999
          - type: precision_at_100
            value: 0.739
          - type: precision_at_1000
            value: 0.109
          - type: precision_at_3
            value: 10.228
          - type: precision_at_5
            value: 7.172000000000001
          - type: recall_at_1
            value: 18.157999999999998
          - type: recall_at_10
            value: 37.967
          - type: recall_at_100
            value: 60.806000000000004
          - type: recall_at_1000
            value: 83.097
          - type: recall_at_3
            value: 27.223999999999997
          - type: recall_at_5
            value: 31.968000000000004
      - task:
          type: Retrieval
        dataset:
          type: climate-fever
          name: MTEB ClimateFEVER
          config: default
          split: test
          revision: None
        metrics:
          - type: map_at_1
            value: 7.055
          - type: map_at_10
            value: 11.609
          - type: map_at_100
            value: 12.83
          - type: map_at_1000
            value: 12.995000000000001
          - type: map_at_3
            value: 9.673
          - type: map_at_5
            value: 10.761999999999999
          - type: mrr_at_1
            value: 15.309000000000001
          - type: mrr_at_10
            value: 23.655
          - type: mrr_at_100
            value: 24.785
          - type: mrr_at_1000
            value: 24.856
          - type: mrr_at_3
            value: 20.499000000000002
          - type: mrr_at_5
            value: 22.425
          - type: ndcg_at_1
            value: 15.309000000000001
          - type: ndcg_at_10
            value: 17.252000000000002
          - type: ndcg_at_100
            value: 22.976
          - type: ndcg_at_1000
            value: 26.480999999999998
          - type: ndcg_at_3
            value: 13.418
          - type: ndcg_at_5
            value: 15.084
          - type: precision_at_1
            value: 15.309000000000001
          - type: precision_at_10
            value: 5.309
          - type: precision_at_100
            value: 1.1320000000000001
          - type: precision_at_1000
            value: 0.17600000000000002
          - type: precision_at_3
            value: 9.62
          - type: precision_at_5
            value: 7.883
          - type: recall_at_1
            value: 7.055
          - type: recall_at_10
            value: 21.891
          - type: recall_at_100
            value: 41.979
          - type: recall_at_1000
            value: 62.239999999999995
          - type: recall_at_3
            value: 12.722
          - type: recall_at_5
            value: 16.81
      - task:
          type: Retrieval
        dataset:
          type: dbpedia-entity
          name: MTEB DBPedia
          config: default
          split: test
          revision: None
        metrics:
          - type: map_at_1
            value: 6.909
          - type: map_at_10
            value: 12.844
          - type: map_at_100
            value: 16.435
          - type: map_at_1000
            value: 17.262
          - type: map_at_3
            value: 10.131
          - type: map_at_5
            value: 11.269
          - type: mrr_at_1
            value: 54.50000000000001
          - type: mrr_at_10
            value: 62.202
          - type: mrr_at_100
            value: 62.81
          - type: mrr_at_1000
            value: 62.824000000000005
          - type: mrr_at_3
            value: 60.5
          - type: mrr_at_5
            value: 61.324999999999996
          - type: ndcg_at_1
            value: 42.125
          - type: ndcg_at_10
            value: 28.284
          - type: ndcg_at_100
            value: 30.444
          - type: ndcg_at_1000
            value: 36.397
          - type: ndcg_at_3
            value: 33.439
          - type: ndcg_at_5
            value: 30.473
          - type: precision_at_1
            value: 54.50000000000001
          - type: precision_at_10
            value: 21.4
          - type: precision_at_100
            value: 6.192
          - type: precision_at_1000
            value: 1.398
          - type: precision_at_3
            value: 36.583
          - type: precision_at_5
            value: 28.799999999999997
          - type: recall_at_1
            value: 6.909
          - type: recall_at_10
            value: 17.296
          - type: recall_at_100
            value: 33.925
          - type: recall_at_1000
            value: 53.786
          - type: recall_at_3
            value: 11.333
          - type: recall_at_5
            value: 13.529
      - task:
          type: Classification
        dataset:
          type: mteb/emotion
          name: MTEB EmotionClassification
          config: default
          split: test
          revision: 4f58c6b202a23cf9a4da393831edf4f9183cad37
        metrics:
          - type: accuracy
            value: 36.08
          - type: f1
            value: 33.016420191943766
      - task:
          type: Retrieval
        dataset:
          type: fever
          name: MTEB FEVER
          config: default
          split: test
          revision: None
        metrics:
          - type: map_at_1
            value: 52.605000000000004
          - type: map_at_10
            value: 63.31400000000001
          - type: map_at_100
            value: 63.678000000000004
          - type: map_at_1000
            value: 63.699
          - type: map_at_3
            value: 61.141
          - type: map_at_5
            value: 62.517999999999994
          - type: mrr_at_1
            value: 56.871
          - type: mrr_at_10
            value: 67.915
          - type: mrr_at_100
            value: 68.24900000000001
          - type: mrr_at_1000
            value: 68.262
          - type: mrr_at_3
            value: 65.809
          - type: mrr_at_5
            value: 67.171
          - type: ndcg_at_1
            value: 56.871
          - type: ndcg_at_10
            value: 69.122
          - type: ndcg_at_100
            value: 70.855
          - type: ndcg_at_1000
            value: 71.368
          - type: ndcg_at_3
            value: 64.974
          - type: ndcg_at_5
            value: 67.318
          - type: precision_at_1
            value: 56.871
          - type: precision_at_10
            value: 9.029
          - type: precision_at_100
            value: 0.996
          - type: precision_at_1000
            value: 0.105
          - type: precision_at_3
            value: 25.893
          - type: precision_at_5
            value: 16.838
          - type: recall_at_1
            value: 52.605000000000004
          - type: recall_at_10
            value: 82.679
          - type: recall_at_100
            value: 90.586
          - type: recall_at_1000
            value: 94.38
          - type: recall_at_3
            value: 71.447
          - type: recall_at_5
            value: 77.218
      - task:
          type: Retrieval
        dataset:
          type: fiqa
          name: MTEB FiQA2018
          config: default
          split: test
          revision: None
        metrics:
          - type: map_at_1
            value: 10.759
          - type: map_at_10
            value: 18.877
          - type: map_at_100
            value: 20.498
          - type: map_at_1000
            value: 20.682000000000002
          - type: map_at_3
            value: 16.159000000000002
          - type: map_at_5
            value: 17.575
          - type: mrr_at_1
            value: 22.531000000000002
          - type: mrr_at_10
            value: 31.155
          - type: mrr_at_100
            value: 32.188
          - type: mrr_at_1000
            value: 32.245000000000005
          - type: mrr_at_3
            value: 28.781000000000002
          - type: mrr_at_5
            value: 30.054
          - type: ndcg_at_1
            value: 22.531000000000002
          - type: ndcg_at_10
            value: 25.189
          - type: ndcg_at_100
            value: 31.958
          - type: ndcg_at_1000
            value: 35.693999999999996
          - type: ndcg_at_3
            value: 22.235
          - type: ndcg_at_5
            value: 23.044999999999998
          - type: precision_at_1
            value: 22.531000000000002
          - type: precision_at_10
            value: 7.438000000000001
          - type: precision_at_100
            value: 1.418
          - type: precision_at_1000
            value: 0.208
          - type: precision_at_3
            value: 15.329
          - type: precision_at_5
            value: 11.451
          - type: recall_at_1
            value: 10.759
          - type: recall_at_10
            value: 31.416
          - type: recall_at_100
            value: 56.989000000000004
          - type: recall_at_1000
            value: 80.33200000000001
          - type: recall_at_3
            value: 20.61
          - type: recall_at_5
            value: 24.903
      - task:
          type: Retrieval
        dataset:
          type: hotpotqa
          name: MTEB HotpotQA
          config: default
          split: test
          revision: None
        metrics:
          - type: map_at_1
            value: 29.21
          - type: map_at_10
            value: 38.765
          - type: map_at_100
            value: 39.498
          - type: map_at_1000
            value: 39.568
          - type: map_at_3
            value: 36.699
          - type: map_at_5
            value: 37.925
          - type: mrr_at_1
            value: 58.42
          - type: mrr_at_10
            value: 65.137
          - type: mrr_at_100
            value: 65.542
          - type: mrr_at_1000
            value: 65.568
          - type: mrr_at_3
            value: 63.698
          - type: mrr_at_5
            value: 64.575
          - type: ndcg_at_1
            value: 58.42
          - type: ndcg_at_10
            value: 47.476
          - type: ndcg_at_100
            value: 50.466
          - type: ndcg_at_1000
            value: 52.064
          - type: ndcg_at_3
            value: 43.986
          - type: ndcg_at_5
            value: 45.824
          - type: precision_at_1
            value: 58.42
          - type: precision_at_10
            value: 9.649000000000001
          - type: precision_at_100
            value: 1.201
          - type: precision_at_1000
            value: 0.14100000000000001
          - type: precision_at_3
            value: 26.977
          - type: precision_at_5
            value: 17.642
          - type: recall_at_1
            value: 29.21
          - type: recall_at_10
            value: 48.244
          - type: recall_at_100
            value: 60.041
          - type: recall_at_1000
            value: 70.743
          - type: recall_at_3
            value: 40.466
          - type: recall_at_5
            value: 44.105
      - task:
          type: Classification
        dataset:
          type: mteb/imdb
          name: MTEB ImdbClassification
          config: default
          split: test
          revision: 3d86128a09e091d6018b6d26cad27f2739fc2db7
        metrics:
          - type: accuracy
            value: 58.7064
          - type: ap
            value: 55.36326227125519
          - type: f1
            value: 57.46763115215848
      - task:
          type: Retrieval
        dataset:
          type: msmarco
          name: MTEB MSMARCO
          config: default
          split: dev
          revision: None
        metrics:
          - type: map_at_1
            value: 15.889000000000001
          - type: map_at_10
            value: 25.979000000000003
          - type: map_at_100
            value: 27.21
          - type: map_at_1000
            value: 27.284000000000002
          - type: map_at_3
            value: 22.665
          - type: map_at_5
            value: 24.578
          - type: mrr_at_1
            value: 16.39
          - type: mrr_at_10
            value: 26.504
          - type: mrr_at_100
            value: 27.689999999999998
          - type: mrr_at_1000
            value: 27.758
          - type: mrr_at_3
            value: 23.24
          - type: mrr_at_5
            value: 25.108000000000004
          - type: ndcg_at_1
            value: 16.39
          - type: ndcg_at_10
            value: 31.799
          - type: ndcg_at_100
            value: 38.034
          - type: ndcg_at_1000
            value: 39.979
          - type: ndcg_at_3
            value: 25.054
          - type: ndcg_at_5
            value: 28.463
          - type: precision_at_1
            value: 16.39
          - type: precision_at_10
            value: 5.189
          - type: precision_at_100
            value: 0.835
          - type: precision_at_1000
            value: 0.1
          - type: precision_at_3
            value: 10.84
          - type: precision_at_5
            value: 8.238
          - type: recall_at_1
            value: 15.889000000000001
          - type: recall_at_10
            value: 49.739
          - type: recall_at_100
            value: 79.251
          - type: recall_at_1000
            value: 94.298
          - type: recall_at_3
            value: 31.427
          - type: recall_at_5
            value: 39.623000000000005
      - task:
          type: Classification
        dataset:
          type: mteb/mtop_domain
          name: MTEB MTOPDomainClassification (en)
          config: en
          split: test
          revision: d80d48c1eb48d3562165c59d59d0034df9fff0bf
        metrics:
          - type: accuracy
            value: 88.81668946648426
          - type: f1
            value: 88.55200075528438
      - task:
          type: Classification
        dataset:
          type: mteb/mtop_intent
          name: MTEB MTOPIntentClassification (en)
          config: en
          split: test
          revision: ae001d0e6b1228650b7bd1c2c65fb50ad11a8aba
        metrics:
          - type: accuracy
            value: 58.611491108071135
          - type: f1
            value: 42.12391403999353
      - task:
          type: Classification
        dataset:
          type: mteb/amazon_massive_intent
          name: MTEB MassiveIntentClassification (en)
          config: en
          split: test
          revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7
        metrics:
          - type: accuracy
            value: 64.67047747141896
          - type: f1
            value: 62.88410885922258
      - task:
          type: Classification
        dataset:
          type: mteb/amazon_massive_scenario
          name: MTEB MassiveScenarioClassification (en)
          config: en
          split: test
          revision: 7d571f92784cd94a019292a1f45445077d0ef634
        metrics:
          - type: accuracy
            value: 71.78547410894419
          - type: f1
            value: 71.69467869218154
      - task:
          type: Clustering
        dataset:
          type: mteb/medrxiv-clustering-p2p
          name: MTEB MedrxivClusteringP2P
          config: default
          split: test
          revision: e7a26af6f3ae46b30dde8737f02c07b1505bcc73
        metrics:
          - type: v_measure
            value: 27.23799937752035
      - task:
          type: Clustering
        dataset:
          type: mteb/medrxiv-clustering-s2s
          name: MTEB MedrxivClusteringS2S
          config: default
          split: test
          revision: 35191c8c0dca72d8ff3efcd72aa802307d469663
        metrics:
          - type: v_measure
            value: 23.26502601343789
      - task:
          type: Reranking
        dataset:
          type: mteb/mind_small
          name: MTEB MindSmallReranking
          config: default
          split: test
          revision: 3bdac13927fdc888b903db93b2ffdbd90b295a69
        metrics:
          - type: map
            value: 30.680711484149832
          - type: mrr
            value: 31.705059795117307
      - task:
          type: Retrieval
        dataset:
          type: nfcorpus
          name: MTEB NFCorpus
          config: default
          split: test
          revision: None
        metrics:
          - type: map_at_1
            value: 4.077
          - type: map_at_10
            value: 8.657
          - type: map_at_100
            value: 10.753
          - type: map_at_1000
            value: 11.885
          - type: map_at_3
            value: 6.5089999999999995
          - type: map_at_5
            value: 7.405
          - type: mrr_at_1
            value: 38.7
          - type: mrr_at_10
            value: 46.065
          - type: mrr_at_100
            value: 46.772000000000006
          - type: mrr_at_1000
            value: 46.83
          - type: mrr_at_3
            value: 44.118
          - type: mrr_at_5
            value: 45.015
          - type: ndcg_at_1
            value: 36.997
          - type: ndcg_at_10
            value: 25.96
          - type: ndcg_at_100
            value: 23.607
          - type: ndcg_at_1000
            value: 32.317
          - type: ndcg_at_3
            value: 31.06
          - type: ndcg_at_5
            value: 28.921000000000003
          - type: precision_at_1
            value: 38.7
          - type: precision_at_10
            value: 19.195
          - type: precision_at_100
            value: 6.164
          - type: precision_at_1000
            value: 1.839
          - type: precision_at_3
            value: 28.999000000000002
          - type: precision_at_5
            value: 25.014999999999997
          - type: recall_at_1
            value: 4.077
          - type: recall_at_10
            value: 11.802
          - type: recall_at_100
            value: 24.365000000000002
          - type: recall_at_1000
            value: 55.277
          - type: recall_at_3
            value: 7.435
          - type: recall_at_5
            value: 8.713999999999999
      - task:
          type: Retrieval
        dataset:
          type: nq
          name: MTEB NQ
          config: default
          split: test
          revision: None
        metrics:
          - type: map_at_1
            value: 19.588
          - type: map_at_10
            value: 32.08
          - type: map_at_100
            value: 33.32
          - type: map_at_1000
            value: 33.377
          - type: map_at_3
            value: 28.166000000000004
          - type: map_at_5
            value: 30.383
          - type: mrr_at_1
            value: 22.161
          - type: mrr_at_10
            value: 34.121
          - type: mrr_at_100
            value: 35.171
          - type: mrr_at_1000
            value: 35.214
          - type: mrr_at_3
            value: 30.692000000000004
          - type: mrr_at_5
            value: 32.706
          - type: ndcg_at_1
            value: 22.131999999999998
          - type: ndcg_at_10
            value: 38.887
          - type: ndcg_at_100
            value: 44.433
          - type: ndcg_at_1000
            value: 45.823
          - type: ndcg_at_3
            value: 31.35
          - type: ndcg_at_5
            value: 35.144
          - type: precision_at_1
            value: 22.131999999999998
          - type: precision_at_10
            value: 6.8629999999999995
          - type: precision_at_100
            value: 0.993
          - type: precision_at_1000
            value: 0.11199999999999999
          - type: precision_at_3
            value: 14.706
          - type: precision_at_5
            value: 10.972999999999999
          - type: recall_at_1
            value: 19.588
          - type: recall_at_10
            value: 57.703
          - type: recall_at_100
            value: 82.194
          - type: recall_at_1000
            value: 92.623
          - type: recall_at_3
            value: 38.012
          - type: recall_at_5
            value: 46.847
      - task:
          type: Retrieval
        dataset:
          type: quora
          name: MTEB QuoraRetrieval
          config: default
          split: test
          revision: None
        metrics:
          - type: map_at_1
            value: 68.038
          - type: map_at_10
            value: 81.572
          - type: map_at_100
            value: 82.25200000000001
          - type: map_at_1000
            value: 82.27600000000001
          - type: map_at_3
            value: 78.618
          - type: map_at_5
            value: 80.449
          - type: mrr_at_1
            value: 78.31
          - type: mrr_at_10
            value: 84.98
          - type: mrr_at_100
            value: 85.122
          - type: mrr_at_1000
            value: 85.124
          - type: mrr_at_3
            value: 83.852
          - type: mrr_at_5
            value: 84.6
          - type: ndcg_at_1
            value: 78.31
          - type: ndcg_at_10
            value: 85.693
          - type: ndcg_at_100
            value: 87.191
          - type: ndcg_at_1000
            value: 87.386
          - type: ndcg_at_3
            value: 82.585
          - type: ndcg_at_5
            value: 84.255
          - type: precision_at_1
            value: 78.31
          - type: precision_at_10
            value: 12.986
          - type: precision_at_100
            value: 1.505
          - type: precision_at_1000
            value: 0.156
          - type: precision_at_3
            value: 36.007
          - type: precision_at_5
            value: 23.735999999999997
          - type: recall_at_1
            value: 68.038
          - type: recall_at_10
            value: 93.598
          - type: recall_at_100
            value: 98.869
          - type: recall_at_1000
            value: 99.86500000000001
          - type: recall_at_3
            value: 84.628
          - type: recall_at_5
            value: 89.316
      - task:
          type: Clustering
        dataset:
          type: mteb/reddit-clustering
          name: MTEB RedditClustering
          config: default
          split: test
          revision: 24640382cdbf8abc73003fb0fa6d111a705499eb
        metrics:
          - type: v_measure
            value: 37.948231664922865
      - task:
          type: Clustering
        dataset:
          type: mteb/reddit-clustering-p2p
          name: MTEB RedditClusteringP2P
          config: default
          split: test
          revision: 282350215ef01743dc01b456c7f5241fa8937f16
        metrics:
          - type: v_measure
            value: 49.90597913763894
      - task:
          type: Retrieval
        dataset:
          type: scidocs
          name: MTEB SCIDOCS
          config: default
          split: test
          revision: None
        metrics:
          - type: map_at_1
            value: 3.753
          - type: map_at_10
            value: 8.915
          - type: map_at_100
            value: 10.374
          - type: map_at_1000
            value: 10.612
          - type: map_at_3
            value: 6.577
          - type: map_at_5
            value: 7.8
          - type: mrr_at_1
            value: 18.4
          - type: mrr_at_10
            value: 27.325
          - type: mrr_at_100
            value: 28.419
          - type: mrr_at_1000
            value: 28.494000000000003
          - type: mrr_at_3
            value: 24.349999999999998
          - type: mrr_at_5
            value: 26.205000000000002
          - type: ndcg_at_1
            value: 18.4
          - type: ndcg_at_10
            value: 15.293000000000001
          - type: ndcg_at_100
            value: 21.592
          - type: ndcg_at_1000
            value: 26.473000000000003
          - type: ndcg_at_3
            value: 14.748
          - type: ndcg_at_5
            value: 12.98
          - type: precision_at_1
            value: 18.4
          - type: precision_at_10
            value: 7.779999999999999
          - type: precision_at_100
            value: 1.693
          - type: precision_at_1000
            value: 0.28800000000000003
          - type: precision_at_3
            value: 13.700000000000001
          - type: precision_at_5
            value: 11.379999999999999
          - type: recall_at_1
            value: 3.753
          - type: recall_at_10
            value: 15.806999999999999
          - type: recall_at_100
            value: 34.37
          - type: recall_at_1000
            value: 58.463
          - type: recall_at_3
            value: 8.338
          - type: recall_at_5
            value: 11.538
      - task:
          type: STS
        dataset:
          type: mteb/sickr-sts
          name: MTEB SICK-R
          config: default
          split: test
          revision: a6ea5a8cab320b040a23452cc28066d9beae2cee
        metrics:
          - type: cos_sim_pearson
            value: 82.58843987639705
          - type: cos_sim_spearman
            value: 76.33071660715956
          - type: euclidean_pearson
            value: 72.8029921002978
          - type: euclidean_spearman
            value: 69.34534284782808
          - type: manhattan_pearson
            value: 72.49781034973653
          - type: manhattan_spearman
            value: 69.24754112621694
      - task:
          type: STS
        dataset:
          type: mteb/sts12-sts
          name: MTEB STS12
          config: default
          split: test
          revision: a0d554a64d88156834ff5ae9920b964011b16384
        metrics:
          - type: cos_sim_pearson
            value: 83.31673079903189
          - type: cos_sim_spearman
            value: 74.27699263517789
          - type: euclidean_pearson
            value: 69.4008910999579
          - type: euclidean_spearman
            value: 59.0716984643048
          - type: manhattan_pearson
            value: 68.87342686919199
          - type: manhattan_spearman
            value: 58.904612865335025
      - task:
          type: STS
        dataset:
          type: mteb/sts13-sts
          name: MTEB STS13
          config: default
          split: test
          revision: 7e90230a92c190f1bf69ae9002b8cea547a64cca
        metrics:
          - type: cos_sim_pearson
            value: 77.59122302327788
          - type: cos_sim_spearman
            value: 78.55383586979005
          - type: euclidean_pearson
            value: 68.18338642204289
          - type: euclidean_spearman
            value: 68.95092864180276
          - type: manhattan_pearson
            value: 68.08807059822706
          - type: manhattan_spearman
            value: 68.86135938270193
      - task:
          type: STS
        dataset:
          type: mteb/sts14-sts
          name: MTEB STS14
          config: default
          split: test
          revision: 6031580fec1f6af667f0bd2da0a551cf4f0b2375
        metrics:
          - type: cos_sim_pearson
            value: 78.51766841424501
          - type: cos_sim_spearman
            value: 73.84318001499558
          - type: euclidean_pearson
            value: 67.2007138855177
          - type: euclidean_spearman
            value: 63.98672842723766
          - type: manhattan_pearson
            value: 67.17773810895949
          - type: manhattan_spearman
            value: 64.07359154832962
      - task:
          type: STS
        dataset:
          type: mteb/sts15-sts
          name: MTEB STS15
          config: default
          split: test
          revision: ae752c7c21bf194d8b67fd573edf7ae58183cbe3
        metrics:
          - type: cos_sim_pearson
            value: 82.73438541570299
          - type: cos_sim_spearman
            value: 83.71357922283677
          - type: euclidean_pearson
            value: 57.50131347498546
          - type: euclidean_spearman
            value: 57.73623619252132
          - type: manhattan_pearson
            value: 58.082992079000725
          - type: manhattan_spearman
            value: 58.42728201167522
      - task:
          type: STS
        dataset:
          type: mteb/sts16-sts
          name: MTEB STS16
          config: default
          split: test
          revision: 4d8694f8f0e0100860b497b999b3dbed754a0513
        metrics:
          - type: cos_sim_pearson
            value: 78.14794654172421
          - type: cos_sim_spearman
            value: 80.025736165043
          - type: euclidean_pearson
            value: 65.87773913985473
          - type: euclidean_spearman
            value: 66.69337751784794
          - type: manhattan_pearson
            value: 66.01039761004415
          - type: manhattan_spearman
            value: 66.89215027952318
      - task:
          type: STS
        dataset:
          type: mteb/sts17-crosslingual-sts
          name: MTEB STS17 (en-en)
          config: en-en
          split: test
          revision: af5e6fb845001ecf41f4c1e033ce921939a2a68d
        metrics:
          - type: cos_sim_pearson
            value: 87.10554507136152
          - type: cos_sim_spearman
            value: 87.4898082140765
          - type: euclidean_pearson
            value: 72.19391114541367
          - type: euclidean_spearman
            value: 70.36647944993783
          - type: manhattan_pearson
            value: 72.18680758133698
          - type: manhattan_spearman
            value: 70.3871215447305
      - task:
          type: STS
        dataset:
          type: mteb/sts22-crosslingual-sts
          name: MTEB STS22 (en)
          config: en
          split: test
          revision: 6d1ba47164174a496b7fa5d3569dae26a6813b80
        metrics:
          - type: cos_sim_pearson
            value: 64.54868111501618
          - type: cos_sim_spearman
            value: 64.25173617448473
          - type: euclidean_pearson
            value: 39.116088900637116
          - type: euclidean_spearman
            value: 53.300772929884
          - type: manhattan_pearson
            value: 38.3844195287959
          - type: manhattan_spearman
            value: 52.846675312001246
      - task:
          type: STS
        dataset:
          type: mteb/stsbenchmark-sts
          name: MTEB STSBenchmark
          config: default
          split: test
          revision: b0fddb56ed78048fa8b90373c8a3cfc37b684831
        metrics:
          - type: cos_sim_pearson
            value: 80.04396610550214
          - type: cos_sim_spearman
            value: 79.19504854997832
          - type: euclidean_pearson
            value: 66.3284657637072
          - type: euclidean_spearman
            value: 63.69531796729492
          - type: manhattan_pearson
            value: 66.82324081038026
          - type: manhattan_spearman
            value: 64.18254512904923
      - task:
          type: Reranking
        dataset:
          type: mteb/scidocs-reranking
          name: MTEB SciDocsRR
          config: default
          split: test
          revision: d3c5e1fc0b855ab6097bf1cda04dd73947d7caab
        metrics:
          - type: map
            value: 74.16264051781705
          - type: mrr
            value: 91.80864796060874
      - task:
          type: Retrieval
        dataset:
          type: scifact
          name: MTEB SciFact
          config: default
          split: test
          revision: None
        metrics:
          - type: map_at_1
            value: 38.983000000000004
          - type: map_at_10
            value: 47.858000000000004
          - type: map_at_100
            value: 48.695
          - type: map_at_1000
            value: 48.752
          - type: map_at_3
            value: 45.444
          - type: map_at_5
            value: 46.906
          - type: mrr_at_1
            value: 41.333
          - type: mrr_at_10
            value: 49.935
          - type: mrr_at_100
            value: 50.51
          - type: mrr_at_1000
            value: 50.55500000000001
          - type: mrr_at_3
            value: 47.833
          - type: mrr_at_5
            value: 49.117
          - type: ndcg_at_1
            value: 41.333
          - type: ndcg_at_10
            value: 52.398999999999994
          - type: ndcg_at_100
            value: 56.196
          - type: ndcg_at_1000
            value: 57.838
          - type: ndcg_at_3
            value: 47.987
          - type: ndcg_at_5
            value: 50.356
          - type: precision_at_1
            value: 41.333
          - type: precision_at_10
            value: 7.167
          - type: precision_at_100
            value: 0.9299999999999999
          - type: precision_at_1000
            value: 0.108
          - type: precision_at_3
            value: 19
          - type: precision_at_5
            value: 12.8
          - type: recall_at_1
            value: 38.983000000000004
          - type: recall_at_10
            value: 64.183
          - type: recall_at_100
            value: 82.02199999999999
          - type: recall_at_1000
            value: 95.167
          - type: recall_at_3
            value: 52.383
          - type: recall_at_5
            value: 58.411
      - task:
          type: PairClassification
        dataset:
          type: mteb/sprintduplicatequestions-pairclassification
          name: MTEB SprintDuplicateQuestions
          config: default
          split: test
          revision: d66bd1f72af766a5cc4b0ca5e00c162f89e8cc46
        metrics:
          - type: cos_sim_accuracy
            value: 99.8019801980198
          - type: cos_sim_ap
            value: 94.9287554635848
          - type: cos_sim_f1
            value: 89.83739837398375
          - type: cos_sim_precision
            value: 91.32231404958677
          - type: cos_sim_recall
            value: 88.4
          - type: dot_accuracy
            value: 99.23762376237623
          - type: dot_ap
            value: 55.22534191245801
          - type: dot_f1
            value: 54.054054054054056
          - type: dot_precision
            value: 55.15088449531738
          - type: dot_recall
            value: 53
          - type: euclidean_accuracy
            value: 99.6108910891089
          - type: euclidean_ap
            value: 82.5195111329438
          - type: euclidean_f1
            value: 78.2847718526663
          - type: euclidean_precision
            value: 86.93528693528694
          - type: euclidean_recall
            value: 71.2
          - type: manhattan_accuracy
            value: 99.5970297029703
          - type: manhattan_ap
            value: 81.96876777875492
          - type: manhattan_f1
            value: 77.33773377337734
          - type: manhattan_precision
            value: 85.94132029339853
          - type: manhattan_recall
            value: 70.3
          - type: max_accuracy
            value: 99.8019801980198
          - type: max_ap
            value: 94.9287554635848
          - type: max_f1
            value: 89.83739837398375
      - task:
          type: Clustering
        dataset:
          type: mteb/stackexchange-clustering
          name: MTEB StackExchangeClustering
          config: default
          split: test
          revision: 6cbc1f7b2bc0622f2e39d2c77fa502909748c259
        metrics:
          - type: v_measure
            value: 46.34997003954114
      - task:
          type: Clustering
        dataset:
          type: mteb/stackexchange-clustering-p2p
          name: MTEB StackExchangeClusteringP2P
          config: default
          split: test
          revision: 815ca46b2622cec33ccafc3735d572c266efdb44
        metrics:
          - type: v_measure
            value: 31.462336020554893
      - task:
          type: Reranking
        dataset:
          type: mteb/stackoverflowdupquestions-reranking
          name: MTEB StackOverflowDupQuestions
          config: default
          split: test
          revision: e185fbe320c72810689fc5848eb6114e1ef5ec69
        metrics:
          - type: map
            value: 47.1757817459526
          - type: mrr
            value: 47.941057104660054
      - task:
          type: Summarization
        dataset:
          type: mteb/summeval
          name: MTEB SummEval
          config: default
          split: test
          revision: cda12ad7615edc362dbf25a00fdd61d3b1eaf93c
        metrics:
          - type: cos_sim_pearson
            value: 30.56106249068471
          - type: cos_sim_spearman
            value: 31.24613190558528
          - type: dot_pearson
            value: 20.486610035794257
          - type: dot_spearman
            value: 23.115667545894546
      - task:
          type: Retrieval
        dataset:
          type: trec-covid
          name: MTEB TRECCOVID
          config: default
          split: test
          revision: None
        metrics:
          - type: map_at_1
            value: 0.182
          - type: map_at_10
            value: 1.155
          - type: map_at_100
            value: 5.118
          - type: map_at_1000
            value: 11.827
          - type: map_at_3
            value: 0.482
          - type: map_at_5
            value: 0.712
          - type: mrr_at_1
            value: 70
          - type: mrr_at_10
            value: 79.483
          - type: mrr_at_100
            value: 79.637
          - type: mrr_at_1000
            value: 79.637
          - type: mrr_at_3
            value: 77.667
          - type: mrr_at_5
            value: 78.567
          - type: ndcg_at_1
            value: 63
          - type: ndcg_at_10
            value: 52.303
          - type: ndcg_at_100
            value: 37.361
          - type: ndcg_at_1000
            value: 32.84
          - type: ndcg_at_3
            value: 58.274
          - type: ndcg_at_5
            value: 55.601
          - type: precision_at_1
            value: 70
          - type: precision_at_10
            value: 55.60000000000001
          - type: precision_at_100
            value: 37.96
          - type: precision_at_1000
            value: 14.738000000000001
          - type: precision_at_3
            value: 62.666999999999994
          - type: precision_at_5
            value: 60
          - type: recall_at_1
            value: 0.182
          - type: recall_at_10
            value: 1.4120000000000001
          - type: recall_at_100
            value: 8.533
          - type: recall_at_1000
            value: 30.572
          - type: recall_at_3
            value: 0.5309999999999999
          - type: recall_at_5
            value: 0.814
      - task:
          type: Retrieval
        dataset:
          type: webis-touche2020
          name: MTEB Touche2020
          config: default
          split: test
          revision: None
        metrics:
          - type: map_at_1
            value: 1.385
          - type: map_at_10
            value: 7.185999999999999
          - type: map_at_100
            value: 11.642
          - type: map_at_1000
            value: 12.953000000000001
          - type: map_at_3
            value: 3.496
          - type: map_at_5
            value: 4.82
          - type: mrr_at_1
            value: 16.326999999999998
          - type: mrr_at_10
            value: 29.461
          - type: mrr_at_100
            value: 31.436999999999998
          - type: mrr_at_1000
            value: 31.436999999999998
          - type: mrr_at_3
            value: 24.490000000000002
          - type: mrr_at_5
            value: 27.857
          - type: ndcg_at_1
            value: 14.285999999999998
          - type: ndcg_at_10
            value: 16.672
          - type: ndcg_at_100
            value: 28.691
          - type: ndcg_at_1000
            value: 39.817
          - type: ndcg_at_3
            value: 15.277
          - type: ndcg_at_5
            value: 15.823
          - type: precision_at_1
            value: 16.326999999999998
          - type: precision_at_10
            value: 15.509999999999998
          - type: precision_at_100
            value: 6.49
          - type: precision_at_1000
            value: 1.4080000000000001
          - type: precision_at_3
            value: 16.326999999999998
          - type: precision_at_5
            value: 16.735
          - type: recall_at_1
            value: 1.385
          - type: recall_at_10
            value: 12.586
          - type: recall_at_100
            value: 40.765
          - type: recall_at_1000
            value: 75.198
          - type: recall_at_3
            value: 4.326
          - type: recall_at_5
            value: 7.074999999999999
      - task:
          type: Classification
        dataset:
          type: mteb/toxic_conversations_50k
          name: MTEB ToxicConversationsClassification
          config: default
          split: test
          revision: d7c0de2777da35d6aae2200a62c6e0e5af397c4c
        metrics:
          - type: accuracy
            value: 59.4402
          - type: ap
            value: 10.16922814263879
          - type: f1
            value: 45.374485104940476
      - task:
          type: Classification
        dataset:
          type: mteb/tweet_sentiment_extraction
          name: MTEB TweetSentimentExtractionClassification
          config: default
          split: test
          revision: d604517c81ca91fe16a244d1248fc021f9ecee7a
        metrics:
          - type: accuracy
            value: 54.25863044708545
          - type: f1
            value: 54.20154252609619
      - task:
          type: Clustering
        dataset:
          type: mteb/twentynewsgroups-clustering
          name: MTEB TwentyNewsgroupsClustering
          config: default
          split: test
          revision: 6125ec4e24fa026cec8a478383ee943acfbd5449
        metrics:
          - type: v_measure
            value: 34.3883169293051
      - task:
          type: PairClassification
        dataset:
          type: mteb/twittersemeval2015-pairclassification
          name: MTEB TwitterSemEval2015
          config: default
          split: test
          revision: 70970daeab8776df92f5ea462b6173c0b46fd2d1
        metrics:
          - type: cos_sim_accuracy
            value: 81.76670441676104
          - type: cos_sim_ap
            value: 59.29878710961347
          - type: cos_sim_f1
            value: 57.33284971587474
          - type: cos_sim_precision
            value: 52.9122963624191
          - type: cos_sim_recall
            value: 62.559366754617415
          - type: dot_accuracy
            value: 77.52279907015557
          - type: dot_ap
            value: 34.17588904643467
          - type: dot_f1
            value: 41.063567529494634
          - type: dot_precision
            value: 30.813953488372093
          - type: dot_recall
            value: 61.53034300791557
          - type: euclidean_accuracy
            value: 80.61631996185254
          - type: euclidean_ap
            value: 54.00362361479352
          - type: euclidean_f1
            value: 53.99111751290361
          - type: euclidean_precision
            value: 49.52653600528518
          - type: euclidean_recall
            value: 59.340369393139845
          - type: manhattan_accuracy
            value: 80.65208320915539
          - type: manhattan_ap
            value: 54.18329507159467
          - type: manhattan_f1
            value: 53.85550960836779
          - type: manhattan_precision
            value: 49.954873646209386
          - type: manhattan_recall
            value: 58.41688654353562
          - type: max_accuracy
            value: 81.76670441676104
          - type: max_ap
            value: 59.29878710961347
          - type: max_f1
            value: 57.33284971587474
      - task:
          type: PairClassification
        dataset:
          type: mteb/twitterurlcorpus-pairclassification
          name: MTEB TwitterURLCorpus
          config: default
          split: test
          revision: 8b6510b0b1fa4e4c4f879467980e9be563ec1cdf
        metrics:
          - type: cos_sim_accuracy
            value: 87.99433383785463
          - type: cos_sim_ap
            value: 83.43513915159009
          - type: cos_sim_f1
            value: 76.3906784964842
          - type: cos_sim_precision
            value: 73.19223985890653
          - type: cos_sim_recall
            value: 79.88142901139513
          - type: dot_accuracy
            value: 81.96142352621571
          - type: dot_ap
            value: 67.78764755689359
          - type: dot_f1
            value: 64.42823356983445
          - type: dot_precision
            value: 56.77801913931779
          - type: dot_recall
            value: 74.46104096088698
          - type: euclidean_accuracy
            value: 81.9478402607987
          - type: euclidean_ap
            value: 67.13958457373279
          - type: euclidean_f1
            value: 60.45118343195266
          - type: euclidean_precision
            value: 58.1625391403359
          - type: euclidean_recall
            value: 62.92731752386819
          - type: manhattan_accuracy
            value: 82.01769705437188
          - type: manhattan_ap
            value: 67.24709477497046
          - type: manhattan_f1
            value: 60.4103846436714
          - type: manhattan_precision
            value: 57.82063916654935
          - type: manhattan_recall
            value: 63.24299353249153
          - type: max_accuracy
            value: 87.99433383785463
          - type: max_ap
            value: 83.43513915159009
          - type: max_f1
            value: 76.3906784964842



Finetuner logo: Finetuner helps you to create experiments in order to improve embeddings on search tasks. It accompanies you to deliver the last mile of performance-tuning for neural search applications.

The text embedding set trained by Jina AI, Finetuner team.

Intented Usage & Model Info

jina-embedding-s-en-v1 is a language model that has been trained using Jina AI's Linnaeus-Clean dataset. This dataset consists of 380 million pairs of sentences, which include both query-document pairs. These pairs were obtained from various domains and were carefully selected through a thorough cleaning process. The Linnaeus-Full dataset, from which the Linnaeus-Clean dataset is derived, originally contained 1.6 billion sentence pairs.

The model has a range of use cases, including information retrieval, semantic textual similarity, text reranking, and more.

With a compact size of just 35 million parameters, the model enables lightning-fast inference while still delivering impressive performance. Additionally, we provide the following options:

Data & Parameters

Please checkout our technical blog.

Metrics

We compared the model against all-minilm-l6-v2/all-mpnet-base-v2 from sbert and text-embeddings-ada-002 from OpenAI:

Name param dimension
all-minilm-l6-v2 23m 384
all-mpnet-base-v2 110m 768
ada-embedding-002 Unknown/OpenAI API 1536
jina-embedding-t-en-v1 14m 312
jina-embedding-s-en-v1 35m 512
jina-embedding-b-en-v1 110m 768
jina-embedding-l-en-v1 330m 1024
Name STS12 STS13 STS14 STS15 STS16 STS17 TRECOVID Quora SciFact
all-minilm-l6-v2 0.724 0.806 0.756 0.854 0.79 0.876 0.473 0.876 0.645
all-mpnet-base-v2 0.726 0.835 0.78 0.857 0.8 0.906 0.513 0.875 0.656
ada-embedding-002 0.698 0.833 0.761 0.861 0.86 0.903 0.685 0.876 0.726
jina-embedding-t-en-v1 0.717 0.773 0.731 0.829 0.777 0.860 0.482 0.840 0.522
jina-embedding-s-en-v1 0.743 0.786 0.738 0.837 0.80 0.875 0.523 0.857 0.524
jina-embedding-b-en-v1 0.751 0.809 0.761 0.856 0.812 0.890 0.606 0.876 0.594
jina-embedding-l-en-v1 0.745 0.832 0.781 0.869 0.837 0.902 0.573 0.881 0.598

Usage

Use with Jina AI Finetuner

!pip install finetuner
import finetuner

model = finetuner.build_model('jinaai/jina-embedding-s-en-v1')
embeddings = finetuner.encode(
    model=model,
    data=['how is the weather today', 'What is the current weather like today?']
)
print(finetuner.cos_sim(embeddings[0], embeddings[1]))

Use with sentence-transformers:

from sentence_transformers import SentenceTransformer
from sentence_transformers.util import cos_sim

sentences = ['how is the weather today', 'What is the current weather like today?']

model = SentenceTransformer('jinaai/jina-embedding-s-en-v1')
embeddings = model.encode(sentences)
print(cos_sim(embeddings[0], embeddings[1]))

Fine-tuning

Please consider Finetuner.

Plans

  1. The development of jina-embedding-s-en-v2 is currently underway with two main objectives: improving performance and increasing the maximum sequence length.
  2. We are currently working on a bilingual embedding model that combines English and X language. The upcoming model will be called jina-embedding-s/b/l-de-v1.

Contact

Join our Discord community and chat with other community members about ideas.

Citation

If you find Jina Embeddings useful in your research, please cite the following paper:

@misc{günther2023jina,
      title={Jina Embeddings: A Novel Set of High-Performance Sentence Embedding Models}, 
      author={Michael Günther and Louis Milliken and Jonathan Geuter and Georgios Mastrapas and Bo Wang and Han Xiao},
      year={2023},
      eprint={2307.11224},
      archivePrefix={arXiv},
      primaryClass={cs.CL}
}