LiLt-funsd-en

This model is a fine-tuned version of SCUT-DLVCLab/lilt-roberta-en-base on the funsd-layoutlmv3 dataset. It achieves the following results on the evaluation set:

  • Loss: 1.7735
  • Answer: {'precision': 0.8693115519253208, 'recall': 0.9118727050183598, 'f1': 0.8900836320191159, 'number': 817}
  • Header: {'precision': 0.6630434782608695, 'recall': 0.5126050420168067, 'f1': 0.5781990521327014, 'number': 119}
  • Question: {'precision': 0.8992673992673993, 'recall': 0.9117920148560817, 'f1': 0.905486399262333, 'number': 1077}
  • Overall Precision: 0.8760
  • Overall Recall: 0.8882
  • Overall F1: 0.8821
  • Overall Accuracy: 0.8027

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 8
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • training_steps: 4000
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Answer Header Question Overall Precision Overall Recall Overall F1 Overall Accuracy
0.4108 10.53 200 0.9495 {'precision': 0.7949260042283298, 'recall': 0.9204406364749081, 'f1': 0.8530913216108904, 'number': 817} {'precision': 0.5338345864661654, 'recall': 0.5966386554621849, 'f1': 0.5634920634920635, 'number': 119} {'precision': 0.8950914340712224, 'recall': 0.8635097493036211, 'f1': 0.8790170132325141, 'number': 1077} 0.8277 0.8708 0.8487 0.7845
0.0402 21.05 400 1.3124 {'precision': 0.8167597765363128, 'recall': 0.8947368421052632, 'f1': 0.8539719626168224, 'number': 817} {'precision': 0.5071428571428571, 'recall': 0.5966386554621849, 'f1': 0.5482625482625483, 'number': 119} {'precision': 0.9133398247322297, 'recall': 0.8709377901578459, 'f1': 0.8916349809885932, 'number': 1077} 0.8438 0.8644 0.8540 0.7901
0.0141 31.58 600 1.4747 {'precision': 0.8429378531073446, 'recall': 0.9130966952264382, 'f1': 0.8766157461809635, 'number': 817} {'precision': 0.6493506493506493, 'recall': 0.42016806722689076, 'f1': 0.5102040816326531, 'number': 119} {'precision': 0.8861788617886179, 'recall': 0.9108635097493036, 'f1': 0.8983516483516484, 'number': 1077} 0.8589 0.8828 0.8707 0.7950
0.0079 42.11 800 1.6605 {'precision': 0.8132464712269273, 'recall': 0.9167686658506732, 'f1': 0.8619102416570771, 'number': 817} {'precision': 0.5407407407407407, 'recall': 0.6134453781512605, 'f1': 0.5748031496062992, 'number': 119} {'precision': 0.8919925512104283, 'recall': 0.8895078922934077, 'f1': 0.8907484890748489, 'number': 1077} 0.8357 0.8843 0.8593 0.7910
0.0064 52.63 1000 1.6328 {'precision': 0.8551564310544612, 'recall': 0.9033047735618115, 'f1': 0.8785714285714284, 'number': 817} {'precision': 0.7466666666666667, 'recall': 0.47058823529411764, 'f1': 0.5773195876288659, 'number': 119} {'precision': 0.9029918404351768, 'recall': 0.924791086350975, 'f1': 0.9137614678899083, 'number': 1077} 0.8770 0.8892 0.8831 0.7950
0.0091 63.16 1200 1.6620 {'precision': 0.8280044101433297, 'recall': 0.9192166462668299, 'f1': 0.87122969837587, 'number': 817} {'precision': 0.6875, 'recall': 0.46218487394957986, 'f1': 0.5527638190954773, 'number': 119} {'precision': 0.9016697588126159, 'recall': 0.9025069637883009, 'f1': 0.9020881670533641, 'number': 1077} 0.8610 0.8833 0.8720 0.7979
0.0031 73.68 1400 1.7310 {'precision': 0.855039637599094, 'recall': 0.9241126070991432, 'f1': 0.8882352941176471, 'number': 817} {'precision': 0.7023809523809523, 'recall': 0.4957983193277311, 'f1': 0.58128078817734, 'number': 119} {'precision': 0.8969917958067457, 'recall': 0.9136490250696379, 'f1': 0.9052437902483901, 'number': 1077} 0.8711 0.8932 0.8820 0.7938
0.002 84.21 1600 1.6978 {'precision': 0.870023419203747, 'recall': 0.9094247246022031, 'f1': 0.8892878515858766, 'number': 817} {'precision': 0.6987951807228916, 'recall': 0.48739495798319327, 'f1': 0.5742574257425742, 'number': 119} {'precision': 0.9021237303785781, 'recall': 0.9071494893221913, 'f1': 0.9046296296296297, 'number': 1077} 0.8802 0.8833 0.8817 0.8048
0.0023 94.74 1800 1.5996 {'precision': 0.8639534883720931, 'recall': 0.9094247246022031, 'f1': 0.8861061419200955, 'number': 817} {'precision': 0.6629213483146067, 'recall': 0.4957983193277311, 'f1': 0.5673076923076922, 'number': 119} {'precision': 0.8969641214351426, 'recall': 0.9052924791086351, 'f1': 0.9011090573012939, 'number': 1077} 0.8728 0.8828 0.8777 0.8026
0.0009 105.26 2000 1.7239 {'precision': 0.8851674641148325, 'recall': 0.9057527539779682, 'f1': 0.8953418027828192, 'number': 817} {'precision': 0.5726495726495726, 'recall': 0.5630252100840336, 'f1': 0.5677966101694915, 'number': 119} {'precision': 0.889487870619946, 'recall': 0.9192200557103064, 'f1': 0.9041095890410958, 'number': 1077} 0.8698 0.8927 0.8811 0.8008
0.0009 115.79 2200 1.6091 {'precision': 0.8576349024110218, 'recall': 0.9143206854345165, 'f1': 0.8850710900473934, 'number': 817} {'precision': 0.6213592233009708, 'recall': 0.5378151260504201, 'f1': 0.5765765765765765, 'number': 119} {'precision': 0.8901098901098901, 'recall': 0.9025069637883009, 'f1': 0.896265560165975, 'number': 1077} 0.8630 0.8857 0.8742 0.8093
0.0003 126.32 2400 1.7210 {'precision': 0.8627450980392157, 'recall': 0.9155446756425949, 'f1': 0.8883610451306414, 'number': 817} {'precision': 0.6555555555555556, 'recall': 0.4957983193277311, 'f1': 0.5645933014354068, 'number': 119} {'precision': 0.8873994638069705, 'recall': 0.9220055710306406, 'f1': 0.9043715846994536, 'number': 1077} 0.8671 0.8942 0.8804 0.8072
0.0006 136.84 2600 1.8215 {'precision': 0.8293478260869566, 'recall': 0.9339045287637698, 'f1': 0.8785261945883708, 'number': 817} {'precision': 0.5887850467289719, 'recall': 0.5294117647058824, 'f1': 0.5575221238938053, 'number': 119} {'precision': 0.9232227488151659, 'recall': 0.904363974001857, 'f1': 0.9136960600375235, 'number': 1077} 0.8646 0.8942 0.8791 0.7946
0.0002 147.37 2800 1.8084 {'precision': 0.875886524822695, 'recall': 0.9069767441860465, 'f1': 0.8911605532170775, 'number': 817} {'precision': 0.5752212389380531, 'recall': 0.5462184873949579, 'f1': 0.5603448275862069, 'number': 119} {'precision': 0.8896860986547085, 'recall': 0.9210770659238626, 'f1': 0.9051094890510949, 'number': 1077} 0.8669 0.8932 0.8799 0.8000
0.0002 157.89 3000 1.8224 {'precision': 0.9067164179104478, 'recall': 0.8922888616891065, 'f1': 0.8994447871684145, 'number': 817} {'precision': 0.6222222222222222, 'recall': 0.47058823529411764, 'f1': 0.5358851674641149, 'number': 119} {'precision': 0.8937112488928255, 'recall': 0.9368616527390901, 'f1': 0.9147778785131461, 'number': 1077} 0.8868 0.8912 0.8890 0.8082
0.0005 168.42 3200 1.7383 {'precision': 0.8754406580493537, 'recall': 0.9118727050183598, 'f1': 0.8932853717026379, 'number': 817} {'precision': 0.6451612903225806, 'recall': 0.5042016806722689, 'f1': 0.5660377358490566, 'number': 119} {'precision': 0.8995475113122172, 'recall': 0.9229340761374187, 'f1': 0.9110907424381303, 'number': 1077} 0.8780 0.8937 0.8858 0.8117
0.0002 178.95 3400 1.7757 {'precision': 0.885954381752701, 'recall': 0.9033047735618115, 'f1': 0.8945454545454545, 'number': 817} {'precision': 0.6896551724137931, 'recall': 0.5042016806722689, 'f1': 0.5825242718446602, 'number': 119} {'precision': 0.9043321299638989, 'recall': 0.9303621169916435, 'f1': 0.917162471395881, 'number': 1077} 0.8876 0.8942 0.8909 0.8104
0.0001 189.47 3600 1.7467 {'precision': 0.8645833333333334, 'recall': 0.9143206854345165, 'f1': 0.8887566924449734, 'number': 817} {'precision': 0.6354166666666666, 'recall': 0.5126050420168067, 'f1': 0.5674418604651162, 'number': 119} {'precision': 0.9027522935779817, 'recall': 0.9136490250696379, 'f1': 0.9081679741578219, 'number': 1077} 0.8741 0.8902 0.8821 0.8054
0.0002 200.0 3800 1.7730 {'precision': 0.8631090487238979, 'recall': 0.9106487148102815, 'f1': 0.8862418106015486, 'number': 817} {'precision': 0.6354166666666666, 'recall': 0.5126050420168067, 'f1': 0.5674418604651162, 'number': 119} {'precision': 0.8952205882352942, 'recall': 0.904363974001857, 'f1': 0.899769053117783, 'number': 1077} 0.8695 0.8838 0.8766 0.8024
0.0001 210.53 4000 1.7735 {'precision': 0.8693115519253208, 'recall': 0.9118727050183598, 'f1': 0.8900836320191159, 'number': 817} {'precision': 0.6630434782608695, 'recall': 0.5126050420168067, 'f1': 0.5781990521327014, 'number': 119} {'precision': 0.8992673992673993, 'recall': 0.9117920148560817, 'f1': 0.905486399262333, 'number': 1077} 0.8760 0.8882 0.8821 0.8027

Framework versions

  • Transformers 4.24.0
  • Pytorch 1.12.1
  • Datasets 2.7.1
  • Tokenizers 0.13.2
Downloads last month
14
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Space using jinhybr/LiLt-funsd-en 1