whisper-large-v2-pt / README.md
jlondonobo's picture
Update README.md
a4e3282
metadata
language:
  - pt
license: apache-2.0
tags:
  - whisper-event
  - generated_from_trainer
datasets:
  - mozilla-foundation/common_voice_11_0
metrics:
  - wer
model-index:
  - name: Whisper Large v2 Portuguese
    results:
      - task:
          name: Automatic Speech Recognition
          type: automatic-speech-recognition
        dataset:
          name: mozilla-foundation/common_voice_11_0 pt
          type: mozilla-foundation/common_voice_11_0
          config: pt
          split: test
          args: pt
        metrics:
          - name: Wer
            type: wer
            value: 5.590020342630419

Whisper Large V2 Portuguese 🇧🇷🇵🇹

Bem-vindo ao whisper large-v2 para transcrição em português 👋🏻

Transcribe Portuguese audio to text with the highest precision.

  • Loss: 0.282
  • Wer: 5.590

This model is a fine-tuned version of openai/whisper-large-v2 on the mozilla-foundation/common_voice_11 dataset. If you want a lighter model, you may be interested in jlondonobo/whisper-medium-pt. It achieves faster inference with almost no difference in WER.

Comparable models

Reported WER is based on the evaluation subset of Common Voice.

Training hyperparameters

We used the following hyperparameters for training:

  • learning_rate: 1e-05
  • train_batch_size: 16
  • eval_batch_size: 8
  • seed: 42
  • gradient_accumulation_steps: 2
  • total_train_batch_size: 32
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 500
  • training_steps: 5000
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Wer
0.0828 1.09 1000 0.1868 6.778
0.0241 3.07 2000 0.2057 6.109
0.0084 5.06 3000 0.2367 6.029
0.0015 7.04 4000 0.2469 5.709
0.0009 9.02 5000 0.2821 5.590 🤗

Framework versions

  • Transformers 4.26.0.dev0
  • Pytorch 1.13.0+cu117
  • Datasets 2.7.1.dev0
  • Tokenizers 0.13.2