Edit model card

moe_training

This is the final stage of training SteloCoder - MoE (Mixture of Experts) training. The dataset contains samples of code translation with five programming languages to python. The training/validation/testing data is processed and is souced from XLCoST dataset.

Model description

The final model is named SteloCoder, a model designed for code machine translation from multiple languages (C++, C#, Java, JavaScript, PHP) to Python. It is based on StarCoder to which we have added additional parameters using LoRA and MoE methods.

Intended uses & limitations

More information needed

Training and evaluation data

The data is processed sourced from XLCoST dataset.

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 1
  • eval_batch_size: 1
  • seed: 42
  • gradient_accumulation_steps: 4
  • total_train_batch_size: 4
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: cosine
  • lr_scheduler_warmup_steps: 50
  • training_steps: 1000

Training results

Training Loss Epoch Step Validation Loss Rate
0.1293 0.05 50 0.1218 5e-05
0.1332 0.1 100 0.1135 0.0000
0.1346 0.15 150 0.1117 0.0000
0.1336 0.2 200 0.1127 0.0000
0.1378 0.25 250 0.1116 0.0000
0.1321 0.3 300 0.1083 0.0000
0.1335 0.35 350 0.1075 0.0000
0.1316 0.4 400 0.1065 0.0000
0.1298 0.45 450 0.1062 0.0000
0.1331 0.5 500 0.1055 0.0000
0.1355 0.55 550 0.1048 0.0000
0.1299 0.6 600 0.1044 0.0000
0.1387 0.65 650 0.1048 0.0000
0.1278 0.7 700 0.1047 0.0000
0.1285 0.75 750 0.1045 0.0000
0.1278 0.8 800 0.1045 0.0000
0.1283 0.85 850 0.1045 0.0000
0.124 0.9 900 0.1043 0.0000
0.1258 0.95 950 0.1043 0.0000
0.1319 1.0 1000 0.1043 0.0

Framework versions

  • Transformers 4.32.1
  • Pytorch 2.0.1+cu117
  • Datasets 2.14.4
  • Tokenizers 0.13.3
Downloads last month
20
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for jlpan/SteloCoder

Base model

bigcode/starcoder
Finetuned
(31)
this model