Edit model card

Obazda3

An experiment to benchmark slerp vs dare_ties for multilingual models.

Obazda3 is a merge of the following models using LazyMergekit:

🧩 Configuration

slices:
  - sources:
      - model: johannhartmann/Wiedervereinigung-WIP
        layer_range: [0, 32]
      - model: yam-peleg/Experiment26-7B
        layer_range: [0, 32]
merge_method: slerp
base_model: johannhartmann/Wiedervereinigung-WIP
parameters:
  t:
    - filter: self_attn
      value: [0, 0.5, 0.3, 0.7, 1]
    - filter: mlp
      value: [1, 0.5, 0.7, 0.3, 0]
    - value: 0.5
dtype: bfloat16
tokenizer_source: base

πŸ’» Usage

!pip install -qU transformers accelerate

from transformers import AutoTokenizer
import transformers
import torch

model = "johannhartmann/Obazda3"
messages = [{"role": "user", "content": "What is a large language model?"}]

tokenizer = AutoTokenizer.from_pretrained(model)
prompt = tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
pipeline = transformers.pipeline(
    "text-generation",
    model=model,
    torch_dtype=torch.float16,
    device_map="auto",
)

outputs = pipeline(prompt, max_new_tokens=256, do_sample=True, temperature=0.7, top_k=50, top_p=0.95)
print(outputs[0]["generated_text"])
Downloads last month
2
Safetensors
Model size
7.24B params
Tensor type
BF16
Β·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for johannhartmann/Obazda3