Edit model card

classify-phishing_real_1

This model is a fine-tuned version of albert/albert-base-v2 on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 0.1185
  • Accuracy: 0.9645
  • F1: 0.9645
  • Precision: 0.9645
  • Recall: 0.9645
  • Accuracy Label 0: 0.9708
  • Accuracy Label 1: 0.9559

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 32
  • eval_batch_size: 32
  • seed: 42
  • gradient_accumulation_steps: 2
  • total_train_batch_size: 64
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 500
  • num_epochs: 3

Training results

Training Loss Epoch Step Validation Loss Accuracy F1 Precision Recall Accuracy Label 0 Accuracy Label 1
0.4991 0.1030 100 0.4748 0.7925 0.7819 0.8136 0.7925 0.9508 0.5747
0.3087 0.2060 200 0.3052 0.8799 0.8793 0.8799 0.8799 0.9189 0.8262
0.2974 0.3090 300 0.2390 0.9093 0.9094 0.9095 0.9093 0.9181 0.8972
0.2644 0.4119 400 0.3068 0.8663 0.8670 0.8887 0.8663 0.7899 0.9715
0.223 0.5149 500 0.2122 0.9154 0.9158 0.9195 0.9154 0.8905 0.9495
0.215 0.6179 600 0.2011 0.9229 0.9222 0.9252 0.9229 0.9714 0.8561
0.1419 0.7209 700 0.1836 0.9305 0.9300 0.9318 0.9305 0.9690 0.8775
0.1511 0.8239 800 0.1828 0.9305 0.9308 0.9327 0.9305 0.9145 0.9526
0.173 0.9269 900 0.1544 0.9430 0.9428 0.9433 0.9430 0.9666 0.9107
0.0986 1.0299 1000 0.1513 0.9429 0.9430 0.9435 0.9429 0.9384 0.9491
0.1403 1.1329 1100 0.1515 0.9426 0.9429 0.9444 0.9426 0.9278 0.9631
0.1133 1.2358 1200 0.1394 0.9475 0.9475 0.9475 0.9475 0.9531 0.9397
0.1117 1.3388 1300 0.1525 0.9457 0.9459 0.9467 0.9457 0.9371 0.9576
0.1277 1.4418 1400 0.1311 0.9490 0.9491 0.9492 0.9490 0.9501 0.9475
0.0886 1.5448 1500 0.1375 0.9503 0.9503 0.9503 0.9503 0.9628 0.9331
0.1273 1.6478 1600 0.1297 0.9533 0.9533 0.9535 0.9533 0.9536 0.9529
0.1102 1.7508 1700 0.1136 0.9578 0.9578 0.9578 0.9578 0.9637 0.9498
0.0793 1.8538 1800 0.1269 0.9562 0.9561 0.9563 0.9562 0.9718 0.9348
0.0995 1.9567 1900 0.1129 0.9591 0.9590 0.9591 0.9591 0.9702 0.9437
0.0846 2.0597 2000 0.1362 0.9533 0.9534 0.9543 0.9533 0.9422 0.9685
0.096 2.1627 2100 0.1383 0.9563 0.9564 0.9572 0.9563 0.9467 0.9696
0.0797 2.2657 2200 0.1137 0.9620 0.9619 0.9619 0.9620 0.9711 0.9494
0.0602 2.3687 2300 0.1211 0.9609 0.9609 0.9609 0.9609 0.9664 0.9532
0.0951 2.4717 2400 0.1194 0.9614 0.9615 0.9615 0.9614 0.9628 0.9596
0.0343 2.5747 2500 0.1237 0.9629 0.9629 0.9630 0.9629 0.9624 0.9634
0.0512 2.6777 2600 0.1263 0.9625 0.9625 0.9625 0.9625 0.9738 0.9471
0.0532 2.7806 2700 0.1229 0.9633 0.9633 0.9633 0.9633 0.9706 0.9533
0.0673 2.8836 2800 0.1206 0.9644 0.9644 0.9644 0.9644 0.9679 0.9596
0.0209 2.9866 2900 0.1185 0.9645 0.9645 0.9645 0.9645 0.9709 0.9556

Framework versions

  • Transformers 4.42.3
  • Pytorch 2.2.1
  • Datasets 2.20.0
  • Tokenizers 0.19.1
Downloads last month
9
Safetensors
Model size
11.7M params
Tensor type
F32
·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for jordan2889/classify-phishing_real_1

Finetuned
(161)
this model