joseagmz's picture
Upload folder using huggingface_hub
8cbbd2f verified
---
base_model: meta-llama/Llama-2-7b-hf
tags:
- generated_from_trainer
model-index:
- name: Llama2-7B-MeditronGuideLines-txt-epochs-1-lr-000002
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
[<img src="https://raw.githubusercontent.com/OpenAccess-AI-Collective/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/OpenAccess-AI-Collective/axolotl)
<details><summary>See axolotl config</summary>
axolotl version: `0.4.0`
```yaml
base_model: meta-llama/Llama-2-7b-hf
model_type: LlamaForCausalLM
tokenizer_type: AutoTokenizer
is_llama_derived_model: true
load_in_8bit: false
load_in_4bit: false
strict: false
datasets:
- path: utrgvseniorproject/MeditronGuidelines
type: completion
dataset_prepared_path: /home/josegomez15/med-llm/Llama_Preprocess_MeditronGuideLines_txt
val_set_size: 0.05
output_dir: ./Llama2-7B-MeditronGuideLines-txt-epochs-1-lr-000002
sequence_len: 4096
sample_packing: true
pad_to_sequence_len: true
adapter:
lora_model_dir:
lora_r:
lora_alpha:
lora_dropout:
lora_target_linear:
lora_fan_in_fan_out:
wandb_project: Llama2-7B-MeditronGuideLines
wandb_entity: utrgvmedai
wandb_watch:
wandb_name: Llama2-7B-MeditronGuideLines-txt-epochs-1-lr-000002
wandb_log_model:
gradient_accumulation_steps: 1
micro_batch_size: 1
num_epochs: 1
#saves_per_epoch: 10
save_steps: 800
#save_total_limit: 4
optimizer: adamw_bnb_8bit
lr_scheduler: cosine
learning_rate: 0.000002
train_on_inputs: true
group_by_length: false
bf16: auto
fp16:
tf32: false
gradient_checkpointing: false
early_stopping_patience:
resume_from_checkpoint: true
local_rank:
logging_steps: 1
xformers_attention:
flash_attention: true
flash_attn_cross_entropy: false
flash_attn_rms_norm: true
flash_attn_fuse_qkv: false
flash_attn_fuse_mlp: true
warmup_steps: 2000
evals_per_epoch: 4
eval_table_size:
eval_sample_packing: False
debug:
deepspeed: /home/josegomez15/axolotl/deepspeed_configs/zero2.json
weight_decay: 0.1
fsdp:
fsdp_config:
special_tokens:
```
</details><br>
# Llama2-7B-MeditronGuideLines-txt-epochs-1-lr-000002
This model is a fine-tuned version of [meta-llama/Llama-2-7b-hf](https://huggingface.co/meta-llama/Llama-2-7b-hf) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 1.3911
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-06
- train_batch_size: 1
- eval_batch_size: 1
- seed: 42
- distributed_type: multi-GPU
- num_devices: 8
- total_train_batch_size: 8
- total_eval_batch_size: 8
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 2000
- num_epochs: 1
### Training results
| Training Loss | Epoch | Step | Validation Loss |
|:-------------:|:-----:|:----:|:---------------:|
| 1.3307 | 0.0 | 1 | 1.5317 |
| 1.4702 | 0.25 | 1141 | 1.4162 |
| 1.3621 | 0.5 | 2282 | 1.4039 |
| 1.4502 | 0.75 | 3423 | 1.3953 |
| 1.4184 | 1.0 | 4564 | 1.3911 |
### Framework versions
- Transformers 4.38.0.dev0
- Pytorch 2.0.1+cu117
- Datasets 2.18.0
- Tokenizers 0.15.0