See axolotl config
axolotl version: 0.4.0
base_model: mistralai/Mistral-7B-v0.1
model_type: MistralForCausalLM
tokenizer_type: LlamaTokenizer
is_mistral_derived_model: true
load_in_8bit: false
load_in_4bit: false
strict: false
datasets:
- path: utrgvseniorproject/medtext
type: completion
dataset_prepared_path: last_run_prepared
val_set_size: 0.05
output_dir: ./mistral-7B-MedText-epochs-5-lr-000002
sequence_len: 4096
sample_packing: true
pad_to_sequence_len: true
adapter:
lora_model_dir:
lora_r:
lora_alpha:
lora_dropout:
lora_target_linear:
lora_fan_in_fan_out:
wandb_project: mistral-7B-MedText
wandb_entity: utrgvmedai
wandb_watch:
wandb_name: mistral-7B-MedText-epochs-5-lr-000002
wandb_log_model:
gradient_accumulation_steps: 1
micro_batch_size: 1
num_epochs: 5
optimizer: adamw_bnb_8bit
lr_scheduler: cosine
learning_rate: 0.000002
train_on_inputs: true
group_by_length: false
bf16: auto
fp16:
tf32: false
gradient_checkpointing: false
early_stopping_patience:
#resume_from_checkpoint: true
local_rank:
logging_steps: 1
xformers_attention:
flash_attention: true
flash_attn_cross_entropy: false
flash_attn_rms_norm: true
flash_attn_fuse_qkv: false
flash_attn_fuse_mlp: true
warmup_steps: 100
evals_per_epoch: 4
eval_table_size:
eval_sample_packing: False
saves_per_epoch: 1
debug:
deepspeed: /home/josegomez15/axolotl/deepspeed_configs/zero2.json
weight_decay: 0.1
fsdp:
fsdp_config:
special_tokens:
mistral-7B-MedText-epochs-5-lr-000002
This model is a fine-tuned version of mistralai/Mistral-7B-v0.1 on the None dataset. It achieves the following results on the evaluation set:
- Loss: 1.6109
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-06
- train_batch_size: 1
- eval_batch_size: 1
- seed: 42
- distributed_type: multi-GPU
- num_devices: 8
- total_train_batch_size: 8
- total_eval_batch_size: 8
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 100
- num_epochs: 5
Training results
Training Loss | Epoch | Step | Validation Loss |
---|---|---|---|
1.5029 | 0.02 | 1 | 1.5677 |
1.5892 | 0.26 | 11 | 1.5674 |
1.2975 | 0.51 | 22 | 1.5646 |
1.6405 | 0.77 | 33 | 1.5585 |
1.4797 | 1.02 | 44 | 1.5535 |
1.4285 | 1.23 | 55 | 1.5510 |
1.565 | 1.49 | 66 | 1.5497 |
1.2469 | 1.74 | 77 | 1.5485 |
1.6729 | 2.0 | 88 | 1.5482 |
1.2883 | 2.23 | 99 | 1.5585 |
1.2285 | 2.49 | 110 | 1.5651 |
1.2074 | 2.74 | 121 | 1.5639 |
1.1427 | 3.0 | 132 | 1.5614 |
1.1015 | 3.21 | 143 | 1.5898 |
1.0554 | 3.47 | 154 | 1.5990 |
1.1675 | 3.72 | 165 | 1.5823 |
1.0228 | 3.98 | 176 | 1.5949 |
1.0462 | 4.19 | 187 | 1.6039 |
1.0623 | 4.44 | 198 | 1.6127 |
1.1305 | 4.7 | 209 | 1.6109 |
Framework versions
- Transformers 4.38.0
- Pytorch 2.0.1+cu117
- Datasets 2.17.0
- Tokenizers 0.15.0
- Downloads last month
- 12
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social
visibility and check back later, or deploy to Inference Endpoints (dedicated)
instead.
Model tree for joseagmz/mistral-7B-MedText-epochs-5-lr-000002
Base model
mistralai/Mistral-7B-v0.1