File size: 2,806 Bytes
a7a4235
 
 
 
acedcad
 
a7a4235
 
 
 
 
 
 
 
 
 
 
acedcad
a7a4235
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
---
license: mit
base_model: openmmlab/upernet-convnext-small
tags:
- image-segmentation
- vision
- generated_from_trainer
model-index:
- name: upernet-convnext-small-finetuned
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# upernet-convnext-small-finetuned

This model is a fine-tuned version of [openmmlab/upernet-convnext-small](https://huggingface.co/openmmlab/upernet-convnext-small) on the jpodivin/plantorgans dataset.
It achieves the following results on the evaluation set:
- Loss: 0.2874
- Mean Iou: 0.4231
- Mean Accuracy: 0.5343
- Overall Accuracy: 0.7437
- Accuracy Void: nan
- Accuracy Fruit: 0.8642
- Accuracy Leaf: 0.7167
- Accuracy Flower: 0.0
- Accuracy Stem: 0.5563
- Iou Void: 0.0
- Iou Fruit: 0.8605
- Iou Leaf: 0.7108
- Iou Flower: 0.0
- Iou Stem: 0.5440
- Median Iou: 0.5440

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 0.0006
- train_batch_size: 10
- eval_batch_size: 10
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 3

### Training results

| Training Loss | Epoch | Step | Validation Loss | Mean Iou | Mean Accuracy | Overall Accuracy | Accuracy Void | Accuracy Fruit | Accuracy Leaf | Accuracy Flower | Accuracy Stem | Iou Void | Iou Fruit | Iou Leaf | Iou Flower | Iou Stem | Median Iou |
|:-------------:|:-----:|:----:|:---------------:|:--------:|:-------------:|:----------------:|:-------------:|:--------------:|:-------------:|:---------------:|:-------------:|:--------:|:---------:|:--------:|:----------:|:--------:|:----------:|
| 0.8456        | 1.0   | 575  | 0.3074          | 0.3946   | 0.4987        | 0.7054           | nan           | 0.8110         | 0.6951        | 0.0             | 0.4888        | 0.0      | 0.8088    | 0.6852   | 0.0        | 0.4791   | 0.4791     |
| 0.3006        | 2.0   | 1150 | 0.2868          | 0.3945   | 0.4965        | 0.7227           | nan           | 0.8533         | 0.7186        | 0.0             | 0.4139        | 0.0      | 0.8494    | 0.7139   | 0.0        | 0.4092   | 0.4092     |
| 0.3315        | 3.0   | 1725 | 0.2874          | 0.4231   | 0.5343        | 0.7437           | nan           | 0.8642         | 0.7167        | 0.0             | 0.5563        | 0.0      | 0.8605    | 0.7108   | 0.0        | 0.5440   | 0.5440     |


### Framework versions

- Transformers 4.38.0.dev0
- Pytorch 2.1.2+cu121
- Datasets 2.16.1
- Tokenizers 0.15.0