jpodivin's picture
End of training
acedcad verified
|
raw
history blame
2.81 kB
metadata
license: mit
base_model: openmmlab/upernet-convnext-small
tags:
  - image-segmentation
  - vision
  - generated_from_trainer
model-index:
  - name: upernet-convnext-small-finetuned
    results: []

upernet-convnext-small-finetuned

This model is a fine-tuned version of openmmlab/upernet-convnext-small on the jpodivin/plantorgans dataset. It achieves the following results on the evaluation set:

  • Loss: 0.2874
  • Mean Iou: 0.4231
  • Mean Accuracy: 0.5343
  • Overall Accuracy: 0.7437
  • Accuracy Void: nan
  • Accuracy Fruit: 0.8642
  • Accuracy Leaf: 0.7167
  • Accuracy Flower: 0.0
  • Accuracy Stem: 0.5563
  • Iou Void: 0.0
  • Iou Fruit: 0.8605
  • Iou Leaf: 0.7108
  • Iou Flower: 0.0
  • Iou Stem: 0.5440
  • Median Iou: 0.5440

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0006
  • train_batch_size: 10
  • eval_batch_size: 10
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 3

Training results

Training Loss Epoch Step Validation Loss Mean Iou Mean Accuracy Overall Accuracy Accuracy Void Accuracy Fruit Accuracy Leaf Accuracy Flower Accuracy Stem Iou Void Iou Fruit Iou Leaf Iou Flower Iou Stem Median Iou
0.8456 1.0 575 0.3074 0.3946 0.4987 0.7054 nan 0.8110 0.6951 0.0 0.4888 0.0 0.8088 0.6852 0.0 0.4791 0.4791
0.3006 2.0 1150 0.2868 0.3945 0.4965 0.7227 nan 0.8533 0.7186 0.0 0.4139 0.0 0.8494 0.7139 0.0 0.4092 0.4092
0.3315 3.0 1725 0.2874 0.4231 0.5343 0.7437 nan 0.8642 0.7167 0.0 0.5563 0.0 0.8605 0.7108 0.0 0.5440 0.5440

Framework versions

  • Transformers 4.38.0.dev0
  • Pytorch 2.1.2+cu121
  • Datasets 2.16.1
  • Tokenizers 0.15.0