|
--- |
|
library_name: transformers |
|
tags: |
|
- cross-encoder |
|
datasets: |
|
- lightonai/ms-marco-en-bge |
|
- juanluisdb/triviaqa-bge-m3-logits |
|
- juanluisdb/nq-bge-m3-logits |
|
language: |
|
- en |
|
base_model: |
|
- cross-encoder/ms-marco-MiniLM-L-6-v2 |
|
--- |
|
|
|
# Model Card for Model ID |
|
|
|
This model is finetuned starting from the well-known [ms-marco-MiniLM-L-6-v2](https://huggingface.co/cross-encoder/ms-marco-MiniLM-L-6-v2) using KL distillation techniques as described [here](https://www.answer.ai/posts/2024-08-13-small-but-mighty-colbert.html), |
|
using [bge-reranker-v2-m3](https://huggingface.co/BAAI/bge-reranker-v2-m3) as teacher |
|
|
|
# Usage |
|
|
|
## Usage with Transformers |
|
|
|
```python |
|
from transformers import AutoTokenizer, AutoModelForSequenceClassification |
|
import torch |
|
model = AutoModelForSequenceClassification.from_pretrained("juanluisdb/MiniLM-L-6-rerank-m3") |
|
tokenizer = AutoTokenizer.from_pretrained("juanluisdb/MiniLM-L-6-rerank-m3") |
|
features = tokenizer(['How many people live in Berlin?', 'How many people live in Berlin?'], ['Berlin has a population of 3,520,031 registered inhabitants in an area of 891.82 square kilometers.', 'New York City is famous for the Metropolitan Museum of Art.'], padding=True, truncation=True, return_tensors="pt") |
|
model.eval() |
|
with torch.no_grad(): |
|
scores = model(**features).logits |
|
print(scores) |
|
``` |
|
|
|
|
|
## Usage with SentenceTransformers |
|
|
|
```python |
|
from sentence_transformers import CrossEncoder |
|
model = CrossEncoder("juanluisdb/MiniLM-L-6-rerank-m3", max_length=512) |
|
scores = model.predict([('Query', 'Paragraph1'), ('Query', 'Paragraph2') , ('Query', 'Paragraph3')]) |
|
``` |
|
|
|
# Evaluation |
|
|
|
### BEIR (NDCG@10) |
|
I've run tests on different BEIR datasets. Cross Encoders rerank top100 BM25 results. |
|
|
|
|
|
| | bm25 | jina-reranker-v1-turbo-en | bge-reranker-v2-m3 | mxbai-rerank-base-v1 | ms-marco-MiniLM-L-6-v2 | MiniLM-L-6-rerank-m3 | |
|
|:---------------|:-------:|:----------------------------:|:---------------------:|:-----------------------:|:-------------------------:|:------------------------------:| |
|
| nq* | 0.305 | 0.533 | **0.597** | 0.535 | 0.523 | 0.580 | |
|
| fever* | 0.638 | 0.852 | 0.857 | 0.767 | 0.801 | **0.867** | |
|
| fiqa | 0.238 | 0.336 | **0.397** | 0.382 | 0.349 | 0.364 | |
|
| trec-covid | 0.589 | 0.774 | 0.784 | **0.830** | 0.741 | 0.738 | |
|
| scidocs | 0.15 | 0.166 | 0.169 | **0.171** | 0.164 | 0.165 | |
|
| scifact | 0.676 | 0.739 | 0.731 | 0.719 | 0.688 | **0.750** | |
|
| nfcorpus | 0.318 | 0.353 | 0.336 | **0.353** | 0.349 | 0.350 | |
|
| hotpotqa | 0.629 | 0.745 | **0.794** | 0.668 | 0.724 | 0.775 | |
|
| dbpedia-entity | 0.319 | 0.421 | **0.445** | 0.416 | 0.445 | 0.444 | |
|
| quora | 0.787 | 0.858 | 0.858 | 0.747 | 0.825 | **0.871** | |
|
| climate-fever | 0.163 | 0.233 | **0.314** | 0.253 | 0.244 | 0.309 | |
|
|
|
|
|
\* Training splits of NQ and Fever were used as part of the training data. |
|
|
|
Comparison with [ablated model](https://huggingface.co/juanluisdb/MiniLM-L-6-rerank-m3-ablated) trained only on MSMarco: |
|
|
|
| | ms-marco-MiniLM-L-6-v2 | MiniLM-L-6-rerank-m3-ablated | |
|
|:---------------|:-------------------------:|:--------------------------------------:| |
|
| nq | 0.5234 | **0.5412** | |
|
| fever | 0.8007 | **0.8221** | |
|
| fiqa | 0.349 | **0.3598** | |
|
| trec-covid | **0.741** | 0.7331 | |
|
| scidocs | **0.1638** | 0.163 | |
|
| scifact | 0.688 | **0.7376** | |
|
| nfcorpus | 0.3493 | **0.3495** | |
|
| hotpotqa | 0.7235 | **0.7583** | |
|
| dbpedia-entity | **0.4445** | 0.4382 | |
|
| quora | 0.8251 | **0.8619** | |
|
| climate-fever | 0.2438 | **0.2449** | |
|
|
|
|
|
# Datasets Used |
|
|
|
~900k queries with 32-way triplets were used from these datasets: |
|
|
|
* MSMarco |
|
* TriviaQA |
|
* Natural Questions |
|
* FEVER |