juanxrl8's picture
Update README.md
45a49ad verified
|
raw
history blame
3.08 kB
---
library_name: transformers
base_model: dccuchile/bert-base-spanish-wwm-uncased
tags:
- generated_from_trainer
datasets:
- biobert_json
metrics:
- precision
- recall
- f1
- accuracy
model-index:
- name: bert-base-spanish-wwm-uncased-finetuned-ner1
results:
- task:
name: Token Classification
type: token-classification
dataset:
name: biobert_json
type: biobert_json
config: Biobert_json
split: validation
args: Biobert_json
metrics:
- name: Precision
type: precision
value: 0.9483257314495495
- name: Recall
type: recall
value: 0.9656754460492778
- name: F1
type: f1
value: 0.9569219543681419
- name: Accuracy
type: accuracy
value: 0.9766181574620958
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# bert-base-spanish-wwm-uncased-finetuned-ner
This model is a fine-tuned version of [dccuchile/bert-base-spanish-wwm-uncased](https://huggingface.co/dccuchile/bert-base-spanish-wwm-uncased) on the biobert_json dataset.
It achieves the following results on the evaluation set:
- Loss: 0.1423
- Precision: 0.9483
- Recall: 0.9657
- F1: 0.9569
- Accuracy: 0.9766
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- num_epochs: 10
### Training results
| Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:|
| 0.0179 | 1.0 | 612 | 0.1292 | 0.9547 | 0.9629 | 0.9588 | 0.9779 |
| 0.0133 | 2.0 | 1224 | 0.1574 | 0.9463 | 0.9684 | 0.9572 | 0.9766 |
| 0.0146 | 3.0 | 1836 | 0.1179 | 0.9500 | 0.9622 | 0.9561 | 0.9769 |
| 0.0238 | 4.0 | 2448 | 0.1388 | 0.9441 | 0.9677 | 0.9557 | 0.9759 |
| 0.0152 | 5.0 | 3060 | 0.1442 | 0.9430 | 0.9634 | 0.9531 | 0.9754 |
| 0.0155 | 6.0 | 3672 | 0.1401 | 0.9480 | 0.9641 | 0.9560 | 0.9760 |
| 0.0126 | 7.0 | 4284 | 0.1411 | 0.9468 | 0.9676 | 0.9571 | 0.9769 |
| 0.0131 | 8.0 | 4896 | 0.1427 | 0.9484 | 0.9657 | 0.9570 | 0.9767 |
| 0.0117 | 9.0 | 5508 | 0.1391 | 0.9485 | 0.9651 | 0.9567 | 0.9767 |
| 0.0116 | 10.0 | 6120 | 0.1423 | 0.9483 | 0.9657 | 0.9569 | 0.9766 |
### Framework versions
- Transformers 4.46.2
- Pytorch 2.5.1+cu121
- Datasets 3.1.0
- Tokenizers 0.20.3