|
--- |
|
library_name: transformers |
|
base_model: dccuchile/bert-base-spanish-wwm-uncased |
|
tags: |
|
- generated_from_trainer |
|
datasets: |
|
- biobert_json |
|
metrics: |
|
- precision |
|
- recall |
|
- f1 |
|
- accuracy |
|
model-index: |
|
- name: bert-base-spanish-wwm-uncased-finetuned-ner1 |
|
results: |
|
- task: |
|
name: Token Classification |
|
type: token-classification |
|
dataset: |
|
name: biobert_json |
|
type: biobert_json |
|
config: Biobert_json |
|
split: validation |
|
args: Biobert_json |
|
metrics: |
|
- name: Precision |
|
type: precision |
|
value: 0.9483257314495495 |
|
- name: Recall |
|
type: recall |
|
value: 0.9656754460492778 |
|
- name: F1 |
|
type: f1 |
|
value: 0.9569219543681419 |
|
- name: Accuracy |
|
type: accuracy |
|
value: 0.9766181574620958 |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# bert-base-spanish-wwm-uncased-finetuned-ner |
|
|
|
This model is a fine-tuned version of [dccuchile/bert-base-spanish-wwm-uncased](https://huggingface.co/dccuchile/bert-base-spanish-wwm-uncased) on the biobert_json dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 0.1423 |
|
- Precision: 0.9483 |
|
- Recall: 0.9657 |
|
- F1: 0.9569 |
|
- Accuracy: 0.9766 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 2e-05 |
|
- train_batch_size: 16 |
|
- eval_batch_size: 16 |
|
- seed: 42 |
|
- optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments |
|
- lr_scheduler_type: linear |
|
- num_epochs: 10 |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |
|
|:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| |
|
| 0.0179 | 1.0 | 612 | 0.1292 | 0.9547 | 0.9629 | 0.9588 | 0.9779 | |
|
| 0.0133 | 2.0 | 1224 | 0.1574 | 0.9463 | 0.9684 | 0.9572 | 0.9766 | |
|
| 0.0146 | 3.0 | 1836 | 0.1179 | 0.9500 | 0.9622 | 0.9561 | 0.9769 | |
|
| 0.0238 | 4.0 | 2448 | 0.1388 | 0.9441 | 0.9677 | 0.9557 | 0.9759 | |
|
| 0.0152 | 5.0 | 3060 | 0.1442 | 0.9430 | 0.9634 | 0.9531 | 0.9754 | |
|
| 0.0155 | 6.0 | 3672 | 0.1401 | 0.9480 | 0.9641 | 0.9560 | 0.9760 | |
|
| 0.0126 | 7.0 | 4284 | 0.1411 | 0.9468 | 0.9676 | 0.9571 | 0.9769 | |
|
| 0.0131 | 8.0 | 4896 | 0.1427 | 0.9484 | 0.9657 | 0.9570 | 0.9767 | |
|
| 0.0117 | 9.0 | 5508 | 0.1391 | 0.9485 | 0.9651 | 0.9567 | 0.9767 | |
|
| 0.0116 | 10.0 | 6120 | 0.1423 | 0.9483 | 0.9657 | 0.9569 | 0.9766 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.46.2 |
|
- Pytorch 2.5.1+cu121 |
|
- Datasets 3.1.0 |
|
- Tokenizers 0.20.3 |
|
|