Edit model card

CRAFT_SciBERT_NER

This model is a fine-tuned version of allenai/scibert_scivocab_uncased on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 0.1143

  • Seqeval classification report: precision recall f1-score support

     CHEBI       0.74      0.70      0.72       457
        CL       0.82      0.75      0.78      1099
       GGP       0.92      0.93      0.93      2232
        GO       0.78      0.84      0.81      2508
        SO       0.83      0.81      0.82      1365
     Taxon       0.99      0.99      0.99     87655
    

    micro avg 0.98 0.98 0.98 95316 macro avg 0.85 0.84 0.84 95316

weighted avg 0.98 0.98 0.98 95316

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 16
  • eval_batch_size: 16
  • seed: 42
  • gradient_accumulation_steps: 2
  • total_train_batch_size: 32
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 3

Training results

Training Loss Epoch Step Validation Loss Seqeval classification report
No log 1.0 347 0.1140 precision recall f1-score support
   CHEBI       0.66      0.69      0.67       457
      CL       0.83      0.69      0.75      1099
     GGP       0.89      0.93      0.91      2232
      GO       0.76      0.85      0.80      2508
      SO       0.79      0.73      0.76      1365
   Taxon       0.99      0.99      0.99     87655

micro avg 0.97 0.97 0.97 95316 macro avg 0.82 0.81 0.81 95316 weighted avg 0.97 0.97 0.97 95316 | | 0.1263 | 2.0 | 695 | 0.1126 | precision recall f1-score support

   CHEBI       0.73      0.69      0.71       457
      CL       0.85      0.72      0.78      1099
     GGP       0.91      0.93      0.92      2232
      GO       0.74      0.87      0.80      2508
      SO       0.82      0.80      0.81      1365
   Taxon       0.99      0.99      0.99     87655

micro avg 0.97 0.97 0.97 95316 macro avg 0.84 0.83 0.83 95316 weighted avg 0.97 0.97 0.97 95316 | | 0.0326 | 3.0 | 1041 | 0.1143 | precision recall f1-score support

   CHEBI       0.74      0.70      0.72       457
      CL       0.82      0.75      0.78      1099
     GGP       0.92      0.93      0.93      2232
      GO       0.78      0.84      0.81      2508
      SO       0.83      0.81      0.82      1365
   Taxon       0.99      0.99      0.99     87655

micro avg 0.98 0.98 0.98 95316 macro avg 0.85 0.84 0.84 95316 weighted avg 0.98 0.98 0.98 95316 |

Framework versions

  • Transformers 4.35.2
  • Pytorch 2.1.0+cu121
  • Datasets 2.15.0
  • Tokenizers 0.15.0
Downloads last month
4
Safetensors
Model size
109M params
Tensor type
F32
·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for judithrosell/CRAFT_SciBERT_NER

Finetuned
(50)
this model