juhehli's picture
Model save
e8a2ec5 verified
metadata
library_name: transformers
license: apache-2.0
base_model: t5-small
tags:
  - generated_from_trainer
metrics:
  - rouge
model-index:
  - name: t5-small-finetuned-question-answer-template
    results: []

t5-small-finetuned-question-answer-template

This model is a fine-tuned version of t5-small on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 0.2608
  • Rouge1: 84.7051
  • Rouge2: 67.1537
  • Rougel: 80.4837
  • Rougelsum: 80.763
  • Gen Len: 13.5

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 16
  • eval_batch_size: 16
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 20
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Rouge1 Rouge2 Rougel Rougelsum Gen Len
No log 1.0 15 2.0280 60.1069 36.344 49.1148 49.3518 11.8077
No log 2.0 30 1.5653 66.3894 39.7781 53.9648 54.1828 11.0769
No log 3.0 45 1.2481 55.2986 33.5161 45.3224 45.3243 12.2308
No log 4.0 60 0.9674 48.2375 31.5412 43.2247 43.6014 13.0
No log 5.0 75 0.7555 48.2945 33.4249 44.2227 44.3073 14.2308
No log 6.0 90 0.6018 61.6858 43.9501 57.9666 58.4171 11.5
No log 7.0 105 0.4910 69.2262 51.5066 66.0391 66.5198 11.4231
No log 8.0 120 0.4109 78.2833 59.9289 73.4671 73.7781 12.5769
No log 9.0 135 0.3641 83.3592 64.287 78.1249 78.6497 13.3846
No log 10.0 150 0.3312 84.3652 66.4705 79.9104 80.3878 13.4615
No log 11.0 165 0.3115 84.3652 66.4705 79.9104 80.3878 13.4615
No log 12.0 180 0.2949 84.3652 66.4705 79.9104 80.3878 13.4615
No log 13.0 195 0.2823 84.2552 66.4705 79.8583 80.2947 13.5
No log 14.0 210 0.2745 84.2552 66.4705 79.8583 80.2947 13.4615
No log 15.0 225 0.2689 84.7051 67.1537 80.4837 80.763 13.5
No log 16.0 240 0.2649 84.7051 67.1537 80.4837 80.763 13.5
No log 17.0 255 0.2630 84.7051 67.1537 80.4837 80.763 13.5
No log 18.0 270 0.2617 84.7051 67.1537 80.4837 80.763 13.5
No log 19.0 285 0.2611 84.7051 67.1537 80.4837 80.763 13.5
No log 20.0 300 0.2608 84.7051 67.1537 80.4837 80.763 13.5

Framework versions

  • Transformers 4.45.2
  • Pytorch 2.4.1+cpu
  • Datasets 3.0.1
  • Tokenizers 0.20.1