|
--- |
|
license: mit |
|
base_model: facebook/bart-large-cnn |
|
tags: |
|
- generated_from_trainer |
|
datasets: |
|
- samsum |
|
model-index: |
|
- name: bart-samsum-finetuned |
|
results: [] |
|
metrics: |
|
- bertscore |
|
- bleu |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# bart-samsum-finetuned |
|
|
|
This model is a fine-tuned version of [facebook/bart-large-cnn](https://huggingface.co/facebook/bart-large-cnn) on the samsum dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 0.1326 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 1e-05 |
|
- train_batch_size: 8 |
|
- eval_batch_size: 8 |
|
- seed: 42 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: linear |
|
- lr_scheduler_warmup_steps: 100 |
|
- num_epochs: 3 |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | |
|
|:-------------:|:-----:|:----:|:---------------:| |
|
| 0.1196 | 1.0 | 74 | 0.1362 | |
|
| 0.0948 | 2.0 | 148 | 0.1334 | |
|
| 0.0738 | 3.0 | 222 | 0.1326 | |
|
|
|
### Evaluation results |
|
|
|
Rouge Scores: |
|
|
|
| Metric | Precision | Recall | F-Measure | |
|
|:----------:|:-----------------:|:-----------------:|:--------------------:| |
|
| rouge1 | Low - 0.2923 | Low - 0.5755 | Low - 0.3645 | |
|
| | Mid - 0.3012 | Mid - 0.5881 | Mid - 0.3722 | |
|
| | High - 0.3108 | High - 0.6011 | High - 0.3811 | |
|
| rouge2 | Low - 0.1185 | Low - 0.2418 | Low - 0.1481 | |
|
| | Mid - 0.1252 | Mid - 0.2545 | Mid - 0.1555 | |
|
| | High - 0.1321 | High - 0.2682 | High - 0.1632 | |
|
| rougeL | Low - 0.2182 | Low - 0.4434 | Low - 0.2744 | |
|
| | Mid - 0.2251 | Mid - 0.4547 | Mid - 0.2810 | |
|
| | High - 0.2328 | High - 0.4679 | High - 0.2886 | |
|
| rougeLsum | Low - 0.2178 | Low - 0.4425 | Low - 0.2739 | |
|
| | Mid - 0.2249 | Mid - 0.4546 | Mid - 0.2807 | |
|
| | High - 0.2321 | High - 0.4679 | High - 0.2883 | |
|
|
|
|
|
BERTScore: |
|
|
|
| Precision | Recall | F1 | |
|
|:---------:|:---------:|:---------:| |
|
| 0.6054495 | 0.6918860 | 0.6425597 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.38.2 |
|
- Pytorch 2.2.1+cu121 |
|
- Datasets 2.18.0 |
|
- Tokenizers 0.15.2 |