Edit model card

segformer-b0-finetuned-busigt2

This model is a fine-tuned version of nvidia/mit-b1 on the kasumi222/busigt5 dataset. It achieves the following results on the evaluation set:

  • Loss: 0.2904
  • Mean Iou: 0.4458
  • Mean Accuracy: 0.6980
  • Overall Accuracy: 0.6969
  • Per Category Iou: [0.0, 0.6551336334577343, 0.6821319425157643]
  • Per Category Accuracy: [nan, 0.6913100552356098, 0.70464740289276]

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.00013
  • train_batch_size: 20
  • eval_batch_size: 20
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 50

Training results

Training Loss Epoch Step Validation Loss Mean Iou Mean Accuracy Overall Accuracy Per Category Iou Per Category Accuracy
0.1095 0.77 20 0.2086 0.4674 0.7410 0.7419 [0.0, 0.6978460673452154, 0.704309291034096] [nan, 0.7461995349612959, 0.7357650020760118]
0.1156 1.54 40 0.1980 0.4186 0.6721 0.6783 [0.0, 0.6446507442278364, 0.6112330250576428] [nan, 0.7089917293749448, 0.635300900559587]
0.1039 2.31 60 0.1987 0.3706 0.5810 0.5757 [0.0, 0.5345322994102119, 0.5773860979625277] [nan, 0.5495831330265778, 0.6123860258526792]
0.0672 3.08 80 0.1960 0.4099 0.6407 0.6439 [0.0, 0.6194380206711395, 0.6103561290824698] [nan, 0.6596136450596995, 0.6218662960315686]
0.0992 3.85 100 0.1969 0.4201 0.6684 0.6695 [0.0, 0.6251984513525223, 0.6351366565306488] [nan, 0.675036447653713, 0.661700391303438]
0.085 4.62 120 0.2075 0.4383 0.6997 0.6964 [0.0, 0.6407576836532538, 0.6742246105299582] [nan, 0.6804532655724195, 0.718889834811138]
0.0561 5.38 140 0.2037 0.4401 0.7033 0.7071 [0.0, 0.6545188689920507, 0.665783897448558] [nan, 0.7263735810923504, 0.6801427547189345]
0.0841 6.15 160 0.2119 0.3651 0.5891 0.5934 [0.0, 0.5494216923933923, 0.5458843877102458] [nan, 0.6146571565924632, 0.5634664881039569]
0.1034 6.92 180 0.2371 0.3684 0.6193 0.6367 [0.0, 0.6047004430113216, 0.5003660220404046] [nan, 0.7229919452156935, 0.5156554415186935]
0.0691 7.69 200 0.2266 0.4285 0.6991 0.7117 [0.0, 0.6730686627556878, 0.6124621276402561] [nan, 0.7742042834577688, 0.6240342690621383]
0.0601 8.46 220 0.2106 0.4198 0.6674 0.6704 [0.0, 0.6308213023617786, 0.6287108585057931] [nan, 0.6851880267250091, 0.6497046776895365]
0.0647 9.23 240 0.2234 0.4229 0.6746 0.6777 [0.0, 0.6338885508159525, 0.6349404984513296] [nan, 0.6928998204597407, 0.6563077167064432]
0.0626 10.0 260 0.2322 0.3991 0.6540 0.6655 [0.0, 0.6267222060572648, 0.570544858752452] [nan, 0.7227113522422911, 0.5852409330048426]
0.0604 10.77 280 0.2021 0.4660 0.7283 0.7288 [0.0, 0.6990308020264264, 0.6989818924111941] [nan, 0.7310753774760368, 0.7255727204344536]
0.0573 11.54 300 0.2227 0.4513 0.7014 0.6951 [0.0, 0.6488805486358904, 0.7049138389320693] [nan, 0.6638350976679388, 0.7389417956785915]
0.0474 12.31 320 0.2108 0.4781 0.7468 0.7371 [0.0, 0.6761855871787447, 0.7580093480444655] [nan, 0.6890590324447889, 0.8044529075728725]
0.0805 13.08 340 0.2257 0.4325 0.6902 0.6940 [0.0, 0.6550347525850334, 0.6423545682885212] [nan, 0.7128733309133007, 0.6675247882412931]
0.0545 13.85 360 0.2155 0.4609 0.7230 0.7167 [0.0, 0.6629649481906197, 0.7196967289093881] [nan, 0.6853650161390015, 0.7606061073292577]
0.0628 14.62 380 0.2397 0.4150 0.6561 0.6611 [0.0, 0.6377593821077956, 0.6070948266377257] [nan, 0.6861969841160831, 0.6259296622984148]
0.0576 15.38 400 0.2177 0.4661 0.7274 0.7272 [0.0, 0.6936915190759695, 0.7046022162863222] [nan, 0.7263017649886684, 0.7284576609239519]
0.0808 16.15 420 0.2263 0.4248 0.6707 0.6740 [0.0, 0.6438773235874202, 0.6304024210524071] [nan, 0.6904172594111472, 0.6510802419847774]
0.0458 16.92 440 0.2342 0.4006 0.6449 0.6525 [0.0, 0.6208902028936363, 0.5809796433249929] [nan, 0.6898132977523129, 0.6000533044931062]
0.0477 17.69 460 0.2683 0.3789 0.6170 0.6232 [0.0, 0.5741692028709614, 0.5625631837395161] [nan, 0.6539633266945951, 0.5800762342358019]
0.0501 18.46 480 0.2364 0.4280 0.6700 0.6675 [0.0, 0.6223049989658083, 0.6617065588280534] [nan, 0.6552936905824757, 0.6846169180090992]
0.039 19.23 500 0.2378 0.4500 0.7052 0.6986 [0.0, 0.6391919313721981, 0.7106968345576296] [nan, 0.665670921345669, 0.7446979100013106]
0.041 20.0 520 0.2477 0.4142 0.6612 0.6659 [0.0, 0.6273087938535062, 0.6153514032911991] [nan, 0.6890233206118104, 0.6333526433632052]
0.0331 20.77 540 0.2488 0.4353 0.6814 0.6778 [0.0, 0.6267198588955959, 0.6791644212315564] [nan, 0.6603973431966015, 0.7023153313193633]
0.0316 21.54 560 0.2468 0.4500 0.7025 0.6974 [0.0, 0.6405571933079939, 0.7093320446678179] [nan, 0.6719456081313097, 0.7331179494069875]
0.0333 22.31 580 0.2477 0.4384 0.6899 0.6906 [0.0, 0.6520329743081146, 0.6630535380613215] [nan, 0.6937796658392771, 0.6860558089232162]
0.0269 23.08 600 0.2603 0.4477 0.7018 0.6996 [0.0, 0.6514078130357787, 0.6916101875532822] [nan, 0.6888588892050193, 0.7147725032516842]
0.033 23.85 620 0.2424 0.4499 0.7061 0.6986 [0.0, 0.6447352671115818, 0.7048670621273163] [nan, 0.6616131152687708, 0.750523958937919]
0.0555 24.62 640 0.2471 0.4342 0.6830 0.6823 [0.0, 0.636756610371055, 0.6659104633164847] [nan, 0.6791280033749645, 0.6868014110272018]
0.0583 25.38 660 0.2517 0.4434 0.6922 0.6879 [0.0, 0.6386719513699022, 0.6913843141331489] [nan, 0.6666374954624388, 0.7178391636040445]
0.154 26.15 680 0.2535 0.4235 0.6597 0.6487 [0.0, 0.5750726006840868, 0.695285501846172] [nan, 0.5943477194462704, 0.7250215035171054]
0.0292 26.92 700 0.2768 0.3679 0.6035 0.6135 [0.0, 0.5756677002657924, 0.5279750019379379] [nan, 0.6631412677700708, 0.5438385402498483]
0.0288 27.69 720 0.2455 0.4676 0.7235 0.7188 [0.0, 0.6761224569996822, 0.7268002447671437] [nan, 0.6954373227898398, 0.7515024928661187]
0.0321 28.46 740 0.2618 0.4324 0.6745 0.6691 [0.0, 0.6201514037000198, 0.6770266576179022] [nan, 0.6425218048210974, 0.7064552401951121]
0.0309 29.23 760 0.2742 0.3944 0.6348 0.6407 [0.0, 0.6008533572398147, 0.5822751024176394] [nan, 0.6701804232440864, 0.599451426280657]
0.0244 30.0 780 0.2667 0.4386 0.6819 0.6750 [0.0, 0.6224630782821559, 0.693390305711243] [nan, 0.6412495217165226, 0.7224713681082742]
0.0642 30.77 800 0.2501 0.4581 0.7121 0.7096 [0.0, 0.6722145834845955, 0.7021141065136746] [nan, 0.6976031865943273, 0.7265325317101161]
0.0481 31.54 820 0.2685 0.4137 0.6689 0.6766 [0.0, 0.6379976664903103, 0.6031984018650592] [nan, 0.7145859291453688, 0.6231961550279683]
0.0311 32.31 840 0.2570 0.4284 0.6804 0.6832 [0.0, 0.6426329055663264, 0.6425854743219936] [nan, 0.6969752862342657, 0.6639063603053335]
0.0389 33.08 860 0.2795 0.3918 0.6456 0.6590 [0.0, 0.6244554318979076, 0.5508200429573112] [nan, 0.7254125011037311, 0.5658618862962298]
0.0282 33.85 880 0.2568 0.4242 0.6759 0.6775 [0.0, 0.6282787291971401, 0.6442735430594793] [nan, 0.6857107537747603, 0.6660974613184492]
0.0245 34.62 900 0.2635 0.4503 0.7043 0.7037 [0.0, 0.6658605581388065, 0.6850412042515538] [nan, 0.7008356961354695, 0.7076892832638209]
0.0315 35.38 920 0.2769 0.4443 0.7038 0.7055 [0.0, 0.6610872730365329, 0.6718978137221756] [nan, 0.7138198907060935, 0.6938235070611933]
0.0283 36.15 940 0.2697 0.4392 0.6920 0.6907 [0.0, 0.6405508279799802, 0.6769668218170816] [nan, 0.6841213809883544, 0.6998318265269149]
0.0257 36.92 960 0.2712 0.4562 0.7099 0.7082 [0.0, 0.6720494469697227, 0.6964887349332429] [nan, 0.6999154296702542, 0.7197879714666775]
0.0188 37.69 980 0.2857 0.4300 0.6763 0.6771 [0.0, 0.6397832221652129, 0.6501046733477022] [nan, 0.6811686795451647, 0.6713607293464362]
0.0259 38.46 1000 0.2812 0.4368 0.6851 0.6838 [0.0, 0.6396217765000503, 0.6707000380577134] [nan, 0.6772780519391329, 0.6929027930893589]
0.0169 39.23 1020 0.2795 0.4542 0.7084 0.7054 [0.0, 0.6598929743362643, 0.7028156867427239] [nan, 0.6906225043413423, 0.7260947520404938]
0.0296 40.0 1040 0.2834 0.4470 0.7015 0.7013 [0.0, 0.6608002641121026, 0.6801095152287282] [nan, 0.7006602764723773, 0.7022773353480376]
0.0183 40.77 1060 0.2874 0.4386 0.6909 0.6903 [0.0, 0.6432231900832152, 0.6726091072738183] [nan, 0.6874296310104291, 0.694422081276136]
0.0199 41.54 1080 0.2741 0.4594 0.7175 0.7154 [0.0, 0.6721657359810768, 0.7061664449453671] [nan, 0.7051238631569653, 0.7298866398455491]
0.0162 42.31 1100 0.2883 0.4414 0.6921 0.6913 [0.0, 0.6492915338226911, 0.6750215527697642] [nan, 0.6870752597447193, 0.6971930338516571]
0.0179 43.08 1120 0.2927 0.4425 0.6936 0.6927 [0.0, 0.651082790586508, 0.6764744769464034] [nan, 0.6884633119781804, 0.6987260886947118]
0.0228 43.85 1140 0.2954 0.4273 0.6807 0.6841 [0.0, 0.6418083531582984, 0.6399672125377378] [nan, 0.7006630235364526, 0.6608033559804007]
0.0164 44.62 1160 0.2954 0.4264 0.6740 0.6756 [0.0, 0.6356634502412776, 0.6436554266840772] [nan, 0.6834636553611899, 0.6644801545389767]
0.0158 45.38 1180 0.2906 0.4433 0.6956 0.6951 [0.0, 0.6536928350497138, 0.6760836624911459] [nan, 0.6927067410990219, 0.6985223421818058]
0.0198 46.15 1200 0.2881 0.4441 0.6969 0.6961 [0.0, 0.6527988151987781, 0.6794425179962712] [nan, 0.6919179412716945, 0.7019810769049473]
0.018 46.92 1220 0.2961 0.4350 0.6844 0.6839 [0.0, 0.6395287774950378, 0.6655290939553297] [nan, 0.6815206961845243, 0.6872821426644097]
0.0179 47.69 1240 0.2898 0.4459 0.6987 0.6982 [0.0, 0.6581945977423002, 0.6796217960953337] [nan, 0.6955130632707722, 0.701934270273604]
0.0213 48.46 1260 0.2902 0.4469 0.7004 0.6998 [0.0, 0.6595482974648909, 0.6811920247361126] [nan, 0.6971510983350829, 0.7036303223269834]
0.0227 49.23 1280 0.2888 0.4452 0.6967 0.6953 [0.0, 0.6532891096762087, 0.6823149709479772] [nan, 0.6885578894699147, 0.7047801134592744]
0.0266 50.0 1300 0.2904 0.4458 0.6980 0.6969 [0.0, 0.6551336334577343, 0.6821319425157643] [nan, 0.6913100552356098, 0.70464740289276]

Framework versions

  • Transformers 4.21.3
  • Pytorch 1.12.1+cu113
  • Datasets 2.4.0
  • Tokenizers 0.12.1
Downloads last month
18
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.