Edit model card

SetFit with sentence-transformers/paraphrase-mpnet-base-v2

This is a SetFit model that can be used for Text Classification. This SetFit model uses sentence-transformers/paraphrase-mpnet-base-v2 as the Sentence Transformer embedding model. A LogisticRegression instance is used for classification.

The model has been trained using an efficient few-shot learning technique that involves:

  1. Fine-tuning a Sentence Transformer with contrastive learning.
  2. Training a classification head with features from the fine-tuned Sentence Transformer.

Model Details

Model Description

Model Sources

Model Labels

Label Examples
79
  • 'peony middle notes'
  • 'lemon middle notes'
  • 'coconut middle notes'
86
  • 'no print/no pattern'
  • 'two tone'
  • 'diagonal stripe'
37
  • 'eel skin leather'
  • 'metal'
  • 'raffia'
82
  • 'collarless'
  • 'peaked lapel'
  • 'front keyhole'
95
  • 'standard toe'
  • 'wide toe'
  • 'extra wide toe'
83
  • 'indoor'
  • 'hike'
  • 'beach'
107
  • 'surplice'
  • 'messenger bag'
  • 'camera bag'
19
  • 'mary jane'
  • 'zip around wallet'
  • 'tongue buckle'
102
  • 'slits at knee'
  • 'slits above hips'
  • 'front slit at hem'
35
  • 'tie'
  • 'gem embellishment'
  • 'caged'
18
  • 'rolo chain'
  • 'cord bracelet'
  • 'figaro'
65
  • 'wheat protein'
  • 'rosemary ingredient'
  • 'pea protein'
68
  • 'bath towel'
  • 'art print'
  • 'reusable bottle'
40
  • 'polyfill'
  • 'silk fill'
  • 'feather fill'
50
  • 'palm grip'
  • 'carpenter hook'
  • 'storm flap'
113
  • 'wide waistband'
  • 'elastic inset'
  • 'belt loops'
75
  • 'glass'
  • 'acrylic'
  • 'opal'
11
  • 'foam cups'
  • 'wire'
  • 'molded cups'
38
  • 'dual layer fabric'
  • '2 way stretch'
  • '4 way stretch'
63
  • 'light support'
  • 'medium supprt'
  • 'high support'
44
  • 'face'
  • 'hand'
  • 'neck/dècolletage'
115
  • 'soy wax'
  • 'paraffin wax'
42
  • 'regular'
  • 'tailored'
  • 'fitted'
97
  • 'king'
  • 'euro'
  • 'standard'
70
  • 'wrist length'
  • 'above thigh'
  • 'below bust'
34
  • 'feminine'
  • 'religious'
  • 'boho'
10
  • 'slim'
  • 'regular'
15
  • '6-10 oz'
  • '11-20 oz'
77
  • 'rose gold metal'
  • 'gold plated'
  • 'alloy'
43
  • 'contrast inner lining'
  • 'simple seaming'
  • 'princess seams'
7
  • 'neroli base notes'
  • 'amber base notes'
  • 'musk base notes'
17
  • 'spot clean'
  • 'dry clean'
  • 'microwave safe'
8
  • 'nourishing'
  • 'firming'
  • 'soothing/healing'
103
  • 'lugged soles'
  • 'non marking soles'
26
  • 'wall control'
  • 'switch control'
99
  • 'fitted sleeves'
  • 'fitted sleeve'
  • 'structured sleeves'
33
  • 'rim'
  • 'feet'
  • '5 panel construction'
64
  • 'mineral oil free'
  • 'propylene glycol free'
  • 'paraffin free'
96
  • 'double strap'
  • 'spaghetti straps'
  • 'thin straps'
1
  • 'shoulder back'
  • 'full coverage'
  • 'low back'
62
  • 'rustic'
  • 'coastal'
  • 'scandinavian'
39
  • 'metallic'
  • 'swiss dot'
  • 'base layer'
60
  • 'halloween'
  • 'christmas holiday'
92
  • 'seamless'
  • 'mid rise waist seam'
  • 'flat seam'
114
  • 'ultra high rise'
  • 'mid rise'
  • 'high waisted'
105
  • 'top handle'
  • 'detachable straps'
  • 'chain strap'
90
  • 'floral'
  • 'psychedelic print'
  • 'paisley'
91
  • 'night'
  • 'day'
45
  • 'serum formulation'
  • 'cream/creme'
  • 'solid'
59
  • 'strong hold'
  • 'flexible hold'
46
  • 'leather'
  • 'fresh aquatic'
  • 'green aromatic'
21
  • 'matte'
  • 'metallic'
  • 'olive'
69
  • 'cinnamon key notes'
  • 'violet key notes'
  • 'pepper key notes'
101
  • 'dropped shoulder'
  • 'puff shoulder'
  • 'flutter sleeve'
61
  • 'summer'
  • 'everyday'
  • 'indoor'
104
  • 'wedding guest'
  • 'bridal'
  • 'halloween'
32
  • 'indigo wash'
  • 'acid wash'
  • 'stonewash'
51
  • 'still life graphic'
  • 'sports graphic'
  • 'star wars'
48
  • 'beige'
  • 'black'
  • 'rose gold frame'
87
  • 'medium pile'
  • 'low pile'
22
  • 'bright'
  • 'pastel'
  • 'light'
41
  • 'matte finish'
  • 'shiny finish'
93
  • 'no buckle'
  • 'geometric shape'
  • 'straight silhouette'
71
  • 'polarized'
  • 'color tinted'
  • 'mirrored'
2
  • 'split back'
  • 'racer back'
  • 'open back'
89
  • 'round stitch pocket'
  • 'seam pocket'
  • 'kangaroo pocket'
20
  • 'removable hoodie'
  • 'packable hood collar'
  • 'hooded'
52
  • 'thick'
  • 'medium thick'
55
  • 'amber head notes'
  • 'lime head notes'
  • 'musk head notes'
58
  • 'back curved hem'
  • 'twist hem'
  • 'ribbed hem'
118
  • 'light wood'
  • 'medium wood'
25
  • 'gifts for him'
  • 'apres ski'
  • 'cozy'
109
  • 'closed toe'
  • 'square toe'
  • 'round toe'
30
  • 'extended cuffs'
  • 'storm cuffs'
  • 'elastic cuff'
24
  • 'ingrown hairs'
  • 'frizz'
  • 'redness'
9
  • 'high cut'
  • 'string bikini'
94
  • 'opaque'
  • 'sheer'
16
  • '2 card slot'
  • 'card slots'
78
  • 'gothcore'
  • 'vanilla girl'
  • 'dyed out'
4
  • 'layered'
  • 'bangle'
  • 'cuff'
23
  • 'parfum'
  • 'eau de toilette'
111
  • 'delicate'
  • 'statement'
12
  • 'flat brim'
  • 'curved brim'
  • 'fold over brim'
98
  • 'dry'
  • 'acne prone'
  • 'mature'
57
  • 'stacked heel'
  • 'kitten heel'
  • 'cone heel'
67
  • 'id slot'
  • 'interior pocket'
  • 'interior zipper pocket'
31
  • 'light wash'
  • 'medium wash'
  • 'colored'
85
  • 'detailed stitching pant'
  • 'simple seaming'
116
  • 'knotted'
  • 'percale'
  • 'waffle weave'
88
  • 'shag'
  • 'cut pile'
74
  • 'study hall'
  • 'y2k'
  • 'enchanted'
72
  • 'fur'
  • 'fleece'
  • 'mesh'
108
  • 'animal'
  • 'love'
73
  • 'unlined'
  • 'fully lined'
  • 'partially lined'
13
  • 'wide brim'
  • 'medium brim'
76
  • 'bpa free material'
  • 'scratch resistant material'
54
  • 'straight handle'
  • 'curved handle'
100
  • 'rolled up sleeves'
  • '3/4 sleeve'
  • 'bracelet length'
84
  • 'manual open'
  • 'auto open'
14
  • 'wide'
  • 'medium'
27
  • 'superhero'
  • 'disney'
49
  • 'half rim'
  • 'full rim'
29
  • 'tall crown'
  • 'short crown'
106
  • 'low stretch'
  • 'non stretch'
112
  • 'mid vamp'
  • 'high vamp'
66
  • 'large interior'
  • 'medium interior'
  • 'small interior'
53
  • 'all hair types'
  • 'damaged/dry hair'
117
  • 'light weight'
  • 'mid weight'
81
  • 'low cut'
  • 'mid chest neckline'
  • 'open front'
5
  • 'thin band'
  • 'soft band elastic'
  • 'elastic band'
28
  • 'flat top crown'
  • 'round crown'
  • 'no crown'
56
  • 'ultra high heel'
  • 'mid heel'
  • 'high heel'
110
  • 'relaxed'
  • 'tailored'
47
  • 'uplifting'
  • 'bold'
3
  • 'changing pad'
  • 'bottle pocket'
0
  • 'squeeze dispenser'
  • 'dropper'
80
  • 'wall mount'
  • 'ceiling mount'
6
  • 'medium'
  • 'wide'
36
  • 'exterior pocket'
  • 'exterior snap pocket'

Evaluation

Metrics

Label Accuracy
all 0.5493

Uses

Direct Use for Inference

First install the SetFit library:

pip install setfit

Then you can load this model and run inference.

from setfit import SetFitModel

# Download from the 🤗 Hub
model = SetFitModel.from_pretrained("kaustubhgap/kaustubh_setfit_1iteration")
# Run inference
preds = model("tube")

Training Details

Training Set Metrics

Training set Min Median Max
Word count 1 1.7047 6
Label Training Sample Count
0 2
1 5
2 12
3 2
4 6
5 3
6 2
7 12
8 16
9 2
10 2
11 11
12 4
13 2
14 2
15 2
16 2
17 6
18 9
19 63
20 8
21 31
22 6
23 2
24 13
25 5
26 2
27 2
28 3
29 2
30 13
31 3
32 7
33 22
34 12
35 102
36 2
37 119
38 34
39 32
40 6
41 2
42 13
43 17
44 5
45 10
46 6
47 2
48 10
49 2
50 91
51 13
52 2
53 2
54 2
55 12
56 4
57 7
58 17
59 2
60 2
61 7
62 9
63 3
64 14
65 53
66 3
67 6
68 41
69 41
70 33
71 5
72 5
73 4
74 7
75 49
76 2
77 23
78 11
79 12
80 2
81 5
82 33
83 33
84 2
85 2
86 17
87 2
88 2
89 10
90 29
91 2
92 8
93 21
94 2
95 3
96 5
97 10
98 5
99 6
100 6
101 12
102 13
103 2
104 10
105 28
106 2
107 321
108 2
109 10
110 2
111 2
112 2
113 15
114 4
115 2
116 5
117 2
118 2

Training Hyperparameters

  • batch_size: (16, 16)
  • num_epochs: (1, 1)
  • max_steps: -1
  • sampling_strategy: oversampling
  • num_iterations: 10
  • body_learning_rate: (2e-05, 1e-05)
  • head_learning_rate: 0.01
  • loss: CosineSimilarityLoss
  • distance_metric: cosine_distance
  • margin: 0.25
  • end_to_end: False
  • use_amp: False
  • warmup_proportion: 0.1
  • seed: 42
  • eval_max_steps: -1
  • load_best_model_at_end: False

Training Results

Epoch Step Training Loss Validation Loss
0.0004 1 0.2895 -
0.0225 50 0.2059 -
0.0449 100 0.1794 -
0.0674 150 0.1994 -
0.0898 200 0.2708 -
0.1123 250 0.1355 -
0.1347 300 0.0695 -
0.1572 350 0.117 -
0.1796 400 0.0601 -
0.2021 450 0.0873 -
0.2245 500 0.07 -
0.2470 550 0.0805 -
0.2694 600 0.0204 -
0.2919 650 0.1059 -
0.3143 700 0.1178 -
0.3368 750 0.1804 -
0.3592 800 0.0979 -
0.3817 850 0.1597 -
0.4041 900 0.1215 -
0.4266 950 0.0188 -
0.4490 1000 0.0738 -
0.4715 1050 0.0635 -
0.4939 1100 0.1439 -
0.5164 1150 0.0684 -
0.5388 1200 0.0732 -
0.5613 1250 0.0401 -
0.5837 1300 0.1223 -
0.6062 1350 0.1044 -
0.6286 1400 0.0717 -
0.6511 1450 0.0413 -
0.6736 1500 0.0544 -
0.6960 1550 0.1419 -
0.7185 1600 0.0284 -
0.7409 1650 0.0484 -
0.7634 1700 0.0049 -
0.7858 1750 0.0229 -
0.8083 1800 0.0739 -
0.8307 1850 0.0371 -
0.8532 1900 0.0213 -
0.8756 1950 0.0753 -
0.8981 2000 0.0359 -
0.9205 2050 0.0232 -
0.9430 2100 0.0507 -
0.9654 2150 0.0258 -
0.9879 2200 0.0606 -
1.0 2227 - 0.2105

Framework Versions

  • Python: 3.10.12
  • SetFit: 1.0.3
  • Sentence Transformers: 3.0.1
  • Transformers: 4.36.1
  • PyTorch: 2.0.1+cu118
  • Datasets: 2.20.0
  • Tokenizers: 0.15.0

Citation

BibTeX

@article{https://doi.org/10.48550/arxiv.2209.11055,
    doi = {10.48550/ARXIV.2209.11055},
    url = {https://arxiv.org/abs/2209.11055},
    author = {Tunstall, Lewis and Reimers, Nils and Jo, Unso Eun Seo and Bates, Luke and Korat, Daniel and Wasserblat, Moshe and Pereg, Oren},
    keywords = {Computation and Language (cs.CL), FOS: Computer and information sciences, FOS: Computer and information sciences},
    title = {Efficient Few-Shot Learning Without Prompts},
    publisher = {arXiv},
    year = {2022},
    copyright = {Creative Commons Attribution 4.0 International}
}
Downloads last month
3
Safetensors
Model size
109M params
Tensor type
F32
·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for kaustubhgap/kaustubh_setfit_1iteration

Finetuned
(247)
this model

Evaluation results