File size: 25,220 Bytes
993d0ac |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 |
---
base_model: sentence-transformers/paraphrase-mpnet-base-v2
library_name: setfit
metrics:
- accuracy
pipeline_tag: text-classification
tags:
- setfit
- sentence-transformers
- text-classification
- generated_from_setfit_trainer
widget:
- text: one piece
- text: tube
- text: heavy weight
- text: track
- text: unitard
inference: true
model-index:
- name: SetFit with sentence-transformers/paraphrase-mpnet-base-v2
results:
- task:
type: text-classification
name: Text Classification
dataset:
name: Unknown
type: unknown
split: test
metrics:
- type: accuracy
value: 0.5493273542600897
name: Accuracy
---
# SetFit with sentence-transformers/paraphrase-mpnet-base-v2
This is a [SetFit](https://github.com/huggingface/setfit) model that can be used for Text Classification. This SetFit model uses [sentence-transformers/paraphrase-mpnet-base-v2](https://huggingface.co/sentence-transformers/paraphrase-mpnet-base-v2) as the Sentence Transformer embedding model. A [LogisticRegression](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html) instance is used for classification.
The model has been trained using an efficient few-shot learning technique that involves:
1. Fine-tuning a [Sentence Transformer](https://www.sbert.net) with contrastive learning.
2. Training a classification head with features from the fine-tuned Sentence Transformer.
## Model Details
### Model Description
- **Model Type:** SetFit
- **Sentence Transformer body:** [sentence-transformers/paraphrase-mpnet-base-v2](https://huggingface.co/sentence-transformers/paraphrase-mpnet-base-v2)
- **Classification head:** a [LogisticRegression](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html) instance
- **Maximum Sequence Length:** 512 tokens
- **Number of Classes:** 119 classes
<!-- - **Training Dataset:** [Unknown](https://huggingface.co/datasets/unknown) -->
<!-- - **Language:** Unknown -->
<!-- - **License:** Unknown -->
### Model Sources
- **Repository:** [SetFit on GitHub](https://github.com/huggingface/setfit)
- **Paper:** [Efficient Few-Shot Learning Without Prompts](https://arxiv.org/abs/2209.11055)
- **Blogpost:** [SetFit: Efficient Few-Shot Learning Without Prompts](https://huggingface.co/blog/setfit)
### Model Labels
| Label | Examples |
|:------|:---------------------------------------------------------------------------------------------------|
| 79 | <ul><li>'peony middle notes'</li><li>'lemon middle notes'</li><li>'coconut middle notes'</li></ul> |
| 86 | <ul><li>'no print/no pattern'</li><li>'two tone'</li><li>'diagonal stripe'</li></ul> |
| 37 | <ul><li>'eel skin leather'</li><li>'metal'</li><li>'raffia'</li></ul> |
| 82 | <ul><li>'collarless'</li><li>'peaked lapel'</li><li>'front keyhole'</li></ul> |
| 95 | <ul><li>'standard toe'</li><li>'wide toe'</li><li>'extra wide toe'</li></ul> |
| 83 | <ul><li>'indoor'</li><li>'hike'</li><li>'beach'</li></ul> |
| 107 | <ul><li>'surplice'</li><li>'messenger bag'</li><li>'camera bag'</li></ul> |
| 19 | <ul><li>'mary jane'</li><li>'zip around wallet'</li><li>'tongue buckle'</li></ul> |
| 102 | <ul><li>'slits at knee'</li><li>'slits above hips'</li><li>'front slit at hem'</li></ul> |
| 35 | <ul><li>'tie'</li><li>'gem embellishment'</li><li>'caged'</li></ul> |
| 18 | <ul><li>'rolo chain'</li><li>'cord bracelet'</li><li>'figaro'</li></ul> |
| 65 | <ul><li>'wheat protein'</li><li>'rosemary ingredient'</li><li>'pea protein'</li></ul> |
| 68 | <ul><li>'bath towel'</li><li>'art print'</li><li>'reusable bottle'</li></ul> |
| 40 | <ul><li>'polyfill'</li><li>'silk fill'</li><li>'feather fill'</li></ul> |
| 50 | <ul><li>'palm grip'</li><li>'carpenter hook'</li><li>'storm flap'</li></ul> |
| 113 | <ul><li>'wide waistband'</li><li>'elastic inset'</li><li>'belt loops'</li></ul> |
| 75 | <ul><li>'glass'</li><li>'acrylic'</li><li>'opal'</li></ul> |
| 11 | <ul><li>'foam cups'</li><li>'wire'</li><li>'molded cups'</li></ul> |
| 38 | <ul><li>'dual layer fabric'</li><li>'2 way stretch'</li><li>'4 way stretch'</li></ul> |
| 63 | <ul><li>'light support'</li><li>'medium supprt'</li><li>'high support'</li></ul> |
| 44 | <ul><li>'face'</li><li>'hand'</li><li>'neck/dècolletage'</li></ul> |
| 115 | <ul><li>'soy wax'</li><li>'paraffin wax'</li></ul> |
| 42 | <ul><li>'regular'</li><li>'tailored'</li><li>'fitted'</li></ul> |
| 97 | <ul><li>'king'</li><li>'euro'</li><li>'standard'</li></ul> |
| 70 | <ul><li>'wrist length'</li><li>'above thigh'</li><li>'below bust'</li></ul> |
| 34 | <ul><li>'feminine'</li><li>'religious'</li><li>'boho'</li></ul> |
| 10 | <ul><li>'slim'</li><li>'regular'</li></ul> |
| 15 | <ul><li>'6-10 oz'</li><li>'11-20 oz'</li></ul> |
| 77 | <ul><li>'rose gold metal'</li><li>'gold plated'</li><li>'alloy'</li></ul> |
| 43 | <ul><li>'contrast inner lining'</li><li>'simple seaming'</li><li>'princess seams'</li></ul> |
| 7 | <ul><li>'neroli base notes'</li><li>'amber base notes'</li><li>'musk base notes'</li></ul> |
| 17 | <ul><li>'spot clean'</li><li>'dry clean'</li><li>'microwave safe'</li></ul> |
| 8 | <ul><li>'nourishing'</li><li>'firming'</li><li>'soothing/healing'</li></ul> |
| 103 | <ul><li>'lugged soles'</li><li>'non marking soles'</li></ul> |
| 26 | <ul><li>'wall control'</li><li>'switch control'</li></ul> |
| 99 | <ul><li>'fitted sleeves'</li><li>'fitted sleeve'</li><li>'structured sleeves'</li></ul> |
| 33 | <ul><li>'rim'</li><li>'feet'</li><li>'5 panel construction'</li></ul> |
| 64 | <ul><li>'mineral oil free'</li><li>'propylene glycol free'</li><li>'paraffin free'</li></ul> |
| 96 | <ul><li>'double strap'</li><li>'spaghetti straps'</li><li>'thin straps'</li></ul> |
| 1 | <ul><li>'shoulder back'</li><li>'full coverage'</li><li>'low back'</li></ul> |
| 62 | <ul><li>'rustic'</li><li>'coastal'</li><li>'scandinavian'</li></ul> |
| 39 | <ul><li>'metallic'</li><li>'swiss dot'</li><li>'base layer'</li></ul> |
| 60 | <ul><li>'halloween'</li><li>'christmas holiday'</li></ul> |
| 92 | <ul><li>'seamless'</li><li>'mid rise waist seam'</li><li>'flat seam'</li></ul> |
| 114 | <ul><li>'ultra high rise'</li><li>'mid rise'</li><li>'high waisted'</li></ul> |
| 105 | <ul><li>'top handle'</li><li>'detachable straps'</li><li>'chain strap'</li></ul> |
| 90 | <ul><li>'floral'</li><li>'psychedelic print'</li><li>'paisley'</li></ul> |
| 91 | <ul><li>'night'</li><li>'day'</li></ul> |
| 45 | <ul><li>'serum formulation'</li><li>'cream/creme'</li><li>'solid'</li></ul> |
| 59 | <ul><li>'strong hold'</li><li>'flexible hold'</li></ul> |
| 46 | <ul><li>'leather'</li><li>'fresh aquatic'</li><li>'green aromatic'</li></ul> |
| 21 | <ul><li>'matte'</li><li>'metallic'</li><li>'olive'</li></ul> |
| 69 | <ul><li>'cinnamon key notes'</li><li>'violet key notes'</li><li>'pepper key notes'</li></ul> |
| 101 | <ul><li>'dropped shoulder'</li><li>'puff shoulder'</li><li>'flutter sleeve'</li></ul> |
| 61 | <ul><li>'summer'</li><li>'everyday'</li><li>'indoor'</li></ul> |
| 104 | <ul><li>'wedding guest'</li><li>'bridal'</li><li>'halloween'</li></ul> |
| 32 | <ul><li>'indigo wash'</li><li>'acid wash'</li><li>'stonewash'</li></ul> |
| 51 | <ul><li>'still life graphic'</li><li>'sports graphic'</li><li>'star wars'</li></ul> |
| 48 | <ul><li>'beige'</li><li>'black'</li><li>'rose gold frame'</li></ul> |
| 87 | <ul><li>'medium pile'</li><li>'low pile'</li></ul> |
| 22 | <ul><li>'bright'</li><li>'pastel'</li><li>'light'</li></ul> |
| 41 | <ul><li>'matte finish'</li><li>'shiny finish'</li></ul> |
| 93 | <ul><li>'no buckle'</li><li>'geometric shape'</li><li>'straight silhouette'</li></ul> |
| 71 | <ul><li>'polarized'</li><li>'color tinted'</li><li>'mirrored'</li></ul> |
| 2 | <ul><li>'split back'</li><li>'racer back'</li><li>'open back'</li></ul> |
| 89 | <ul><li>'round stitch pocket'</li><li>'seam pocket'</li><li>'kangaroo pocket'</li></ul> |
| 20 | <ul><li>'removable hoodie'</li><li>'packable hood collar'</li><li>'hooded'</li></ul> |
| 52 | <ul><li>'thick'</li><li>'medium thick'</li></ul> |
| 55 | <ul><li>'amber head notes'</li><li>'lime head notes'</li><li>'musk head notes'</li></ul> |
| 58 | <ul><li>'back curved hem'</li><li>'twist hem'</li><li>'ribbed hem'</li></ul> |
| 118 | <ul><li>'light wood'</li><li>'medium wood'</li></ul> |
| 25 | <ul><li>'gifts for him'</li><li>'apres ski'</li><li>'cozy'</li></ul> |
| 109 | <ul><li>'closed toe'</li><li>'square toe'</li><li>'round toe'</li></ul> |
| 30 | <ul><li>'extended cuffs'</li><li>'storm cuffs'</li><li>'elastic cuff'</li></ul> |
| 24 | <ul><li>'ingrown hairs'</li><li>'frizz'</li><li>'redness'</li></ul> |
| 9 | <ul><li>'high cut'</li><li>'string bikini'</li></ul> |
| 94 | <ul><li>'opaque'</li><li>'sheer'</li></ul> |
| 16 | <ul><li>'2 card slot'</li><li>'card slots'</li></ul> |
| 78 | <ul><li>'gothcore'</li><li>'vanilla girl'</li><li>'dyed out'</li></ul> |
| 4 | <ul><li>'layered'</li><li>'bangle'</li><li>'cuff'</li></ul> |
| 23 | <ul><li>'parfum'</li><li>'eau de toilette'</li></ul> |
| 111 | <ul><li>'delicate'</li><li>'statement'</li></ul> |
| 12 | <ul><li>'flat brim'</li><li>'curved brim'</li><li>'fold over brim'</li></ul> |
| 98 | <ul><li>'dry'</li><li>'acne prone'</li><li>'mature'</li></ul> |
| 57 | <ul><li>'stacked heel'</li><li>'kitten heel'</li><li>'cone heel'</li></ul> |
| 67 | <ul><li>'id slot'</li><li>'interior pocket'</li><li>'interior zipper pocket'</li></ul> |
| 31 | <ul><li>'light wash'</li><li>'medium wash'</li><li>'colored'</li></ul> |
| 85 | <ul><li>'detailed stitching pant'</li><li>'simple seaming'</li></ul> |
| 116 | <ul><li>'knotted'</li><li>'percale'</li><li>'waffle weave'</li></ul> |
| 88 | <ul><li>'shag'</li><li>'cut pile'</li></ul> |
| 74 | <ul><li>'study hall'</li><li>'y2k'</li><li>'enchanted'</li></ul> |
| 72 | <ul><li>'fur'</li><li>'fleece'</li><li>'mesh'</li></ul> |
| 108 | <ul><li>'animal'</li><li>'love'</li></ul> |
| 73 | <ul><li>'unlined'</li><li>'fully lined'</li><li>'partially lined'</li></ul> |
| 13 | <ul><li>'wide brim'</li><li>'medium brim'</li></ul> |
| 76 | <ul><li>'bpa free material'</li><li>'scratch resistant material'</li></ul> |
| 54 | <ul><li>'straight handle'</li><li>'curved handle'</li></ul> |
| 100 | <ul><li>'rolled up sleeves'</li><li>'3/4 sleeve'</li><li>'bracelet length'</li></ul> |
| 84 | <ul><li>'manual open'</li><li>'auto open'</li></ul> |
| 14 | <ul><li>'wide'</li><li>'medium'</li></ul> |
| 27 | <ul><li>'superhero'</li><li>'disney'</li></ul> |
| 49 | <ul><li>'half rim'</li><li>'full rim'</li></ul> |
| 29 | <ul><li>'tall crown'</li><li>'short crown'</li></ul> |
| 106 | <ul><li>'low stretch'</li><li>'non stretch'</li></ul> |
| 112 | <ul><li>'mid vamp'</li><li>'high vamp'</li></ul> |
| 66 | <ul><li>'large interior'</li><li>'medium interior'</li><li>'small interior'</li></ul> |
| 53 | <ul><li>'all hair types'</li><li>'damaged/dry hair'</li></ul> |
| 117 | <ul><li>'light weight'</li><li>'mid weight'</li></ul> |
| 81 | <ul><li>'low cut'</li><li>'mid chest neckline'</li><li>'open front'</li></ul> |
| 5 | <ul><li>'thin band'</li><li>'soft band elastic'</li><li>'elastic band'</li></ul> |
| 28 | <ul><li>'flat top crown'</li><li>'round crown'</li><li>'no crown'</li></ul> |
| 56 | <ul><li>'ultra high heel'</li><li>'mid heel'</li><li>'high heel'</li></ul> |
| 110 | <ul><li>'relaxed'</li><li>'tailored'</li></ul> |
| 47 | <ul><li>'uplifting'</li><li>'bold'</li></ul> |
| 3 | <ul><li>'changing pad'</li><li>'bottle pocket'</li></ul> |
| 0 | <ul><li>'squeeze dispenser'</li><li>'dropper'</li></ul> |
| 80 | <ul><li>'wall mount'</li><li>'ceiling mount'</li></ul> |
| 6 | <ul><li>'medium'</li><li>'wide'</li></ul> |
| 36 | <ul><li>'exterior pocket'</li><li>'exterior snap pocket'</li></ul> |
## Evaluation
### Metrics
| Label | Accuracy |
|:--------|:---------|
| **all** | 0.5493 |
## Uses
### Direct Use for Inference
First install the SetFit library:
```bash
pip install setfit
```
Then you can load this model and run inference.
```python
from setfit import SetFitModel
# Download from the 🤗 Hub
model = SetFitModel.from_pretrained("kaustubhgap/kaustubh_setfit_1iteration")
# Run inference
preds = model("tube")
```
<!--
### Downstream Use
*List how someone could finetune this model on their own dataset.*
-->
<!--
### Out-of-Scope Use
*List how the model may foreseeably be misused and address what users ought not to do with the model.*
-->
<!--
## Bias, Risks and Limitations
*What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
-->
<!--
### Recommendations
*What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
-->
## Training Details
### Training Set Metrics
| Training set | Min | Median | Max |
|:-------------|:----|:-------|:----|
| Word count | 1 | 1.7047 | 6 |
| Label | Training Sample Count |
|:------|:----------------------|
| 0 | 2 |
| 1 | 5 |
| 2 | 12 |
| 3 | 2 |
| 4 | 6 |
| 5 | 3 |
| 6 | 2 |
| 7 | 12 |
| 8 | 16 |
| 9 | 2 |
| 10 | 2 |
| 11 | 11 |
| 12 | 4 |
| 13 | 2 |
| 14 | 2 |
| 15 | 2 |
| 16 | 2 |
| 17 | 6 |
| 18 | 9 |
| 19 | 63 |
| 20 | 8 |
| 21 | 31 |
| 22 | 6 |
| 23 | 2 |
| 24 | 13 |
| 25 | 5 |
| 26 | 2 |
| 27 | 2 |
| 28 | 3 |
| 29 | 2 |
| 30 | 13 |
| 31 | 3 |
| 32 | 7 |
| 33 | 22 |
| 34 | 12 |
| 35 | 102 |
| 36 | 2 |
| 37 | 119 |
| 38 | 34 |
| 39 | 32 |
| 40 | 6 |
| 41 | 2 |
| 42 | 13 |
| 43 | 17 |
| 44 | 5 |
| 45 | 10 |
| 46 | 6 |
| 47 | 2 |
| 48 | 10 |
| 49 | 2 |
| 50 | 91 |
| 51 | 13 |
| 52 | 2 |
| 53 | 2 |
| 54 | 2 |
| 55 | 12 |
| 56 | 4 |
| 57 | 7 |
| 58 | 17 |
| 59 | 2 |
| 60 | 2 |
| 61 | 7 |
| 62 | 9 |
| 63 | 3 |
| 64 | 14 |
| 65 | 53 |
| 66 | 3 |
| 67 | 6 |
| 68 | 41 |
| 69 | 41 |
| 70 | 33 |
| 71 | 5 |
| 72 | 5 |
| 73 | 4 |
| 74 | 7 |
| 75 | 49 |
| 76 | 2 |
| 77 | 23 |
| 78 | 11 |
| 79 | 12 |
| 80 | 2 |
| 81 | 5 |
| 82 | 33 |
| 83 | 33 |
| 84 | 2 |
| 85 | 2 |
| 86 | 17 |
| 87 | 2 |
| 88 | 2 |
| 89 | 10 |
| 90 | 29 |
| 91 | 2 |
| 92 | 8 |
| 93 | 21 |
| 94 | 2 |
| 95 | 3 |
| 96 | 5 |
| 97 | 10 |
| 98 | 5 |
| 99 | 6 |
| 100 | 6 |
| 101 | 12 |
| 102 | 13 |
| 103 | 2 |
| 104 | 10 |
| 105 | 28 |
| 106 | 2 |
| 107 | 321 |
| 108 | 2 |
| 109 | 10 |
| 110 | 2 |
| 111 | 2 |
| 112 | 2 |
| 113 | 15 |
| 114 | 4 |
| 115 | 2 |
| 116 | 5 |
| 117 | 2 |
| 118 | 2 |
### Training Hyperparameters
- batch_size: (16, 16)
- num_epochs: (1, 1)
- max_steps: -1
- sampling_strategy: oversampling
- num_iterations: 10
- body_learning_rate: (2e-05, 1e-05)
- head_learning_rate: 0.01
- loss: CosineSimilarityLoss
- distance_metric: cosine_distance
- margin: 0.25
- end_to_end: False
- use_amp: False
- warmup_proportion: 0.1
- seed: 42
- eval_max_steps: -1
- load_best_model_at_end: False
### Training Results
| Epoch | Step | Training Loss | Validation Loss |
|:------:|:----:|:-------------:|:---------------:|
| 0.0004 | 1 | 0.2895 | - |
| 0.0225 | 50 | 0.2059 | - |
| 0.0449 | 100 | 0.1794 | - |
| 0.0674 | 150 | 0.1994 | - |
| 0.0898 | 200 | 0.2708 | - |
| 0.1123 | 250 | 0.1355 | - |
| 0.1347 | 300 | 0.0695 | - |
| 0.1572 | 350 | 0.117 | - |
| 0.1796 | 400 | 0.0601 | - |
| 0.2021 | 450 | 0.0873 | - |
| 0.2245 | 500 | 0.07 | - |
| 0.2470 | 550 | 0.0805 | - |
| 0.2694 | 600 | 0.0204 | - |
| 0.2919 | 650 | 0.1059 | - |
| 0.3143 | 700 | 0.1178 | - |
| 0.3368 | 750 | 0.1804 | - |
| 0.3592 | 800 | 0.0979 | - |
| 0.3817 | 850 | 0.1597 | - |
| 0.4041 | 900 | 0.1215 | - |
| 0.4266 | 950 | 0.0188 | - |
| 0.4490 | 1000 | 0.0738 | - |
| 0.4715 | 1050 | 0.0635 | - |
| 0.4939 | 1100 | 0.1439 | - |
| 0.5164 | 1150 | 0.0684 | - |
| 0.5388 | 1200 | 0.0732 | - |
| 0.5613 | 1250 | 0.0401 | - |
| 0.5837 | 1300 | 0.1223 | - |
| 0.6062 | 1350 | 0.1044 | - |
| 0.6286 | 1400 | 0.0717 | - |
| 0.6511 | 1450 | 0.0413 | - |
| 0.6736 | 1500 | 0.0544 | - |
| 0.6960 | 1550 | 0.1419 | - |
| 0.7185 | 1600 | 0.0284 | - |
| 0.7409 | 1650 | 0.0484 | - |
| 0.7634 | 1700 | 0.0049 | - |
| 0.7858 | 1750 | 0.0229 | - |
| 0.8083 | 1800 | 0.0739 | - |
| 0.8307 | 1850 | 0.0371 | - |
| 0.8532 | 1900 | 0.0213 | - |
| 0.8756 | 1950 | 0.0753 | - |
| 0.8981 | 2000 | 0.0359 | - |
| 0.9205 | 2050 | 0.0232 | - |
| 0.9430 | 2100 | 0.0507 | - |
| 0.9654 | 2150 | 0.0258 | - |
| 0.9879 | 2200 | 0.0606 | - |
| 1.0 | 2227 | - | 0.2105 |
### Framework Versions
- Python: 3.10.12
- SetFit: 1.0.3
- Sentence Transformers: 3.0.1
- Transformers: 4.36.1
- PyTorch: 2.0.1+cu118
- Datasets: 2.20.0
- Tokenizers: 0.15.0
## Citation
### BibTeX
```bibtex
@article{https://doi.org/10.48550/arxiv.2209.11055,
doi = {10.48550/ARXIV.2209.11055},
url = {https://arxiv.org/abs/2209.11055},
author = {Tunstall, Lewis and Reimers, Nils and Jo, Unso Eun Seo and Bates, Luke and Korat, Daniel and Wasserblat, Moshe and Pereg, Oren},
keywords = {Computation and Language (cs.CL), FOS: Computer and information sciences, FOS: Computer and information sciences},
title = {Efficient Few-Shot Learning Without Prompts},
publisher = {arXiv},
year = {2022},
copyright = {Creative Commons Attribution 4.0 International}
}
```
<!--
## Glossary
*Clearly define terms in order to be accessible across audiences.*
-->
<!--
## Model Card Authors
*Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
-->
<!--
## Model Card Contact
*Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
--> |