checkpoints
This model is a fine-tuned version of kavg/LiLT-RE-EN on the xfun dataset. It achieves the following results on the evaluation set:
- Precision: 0.4702
- Recall: 0.5581
- F1: 0.5104
- Loss: 0.5301
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 8
- eval_batch_size: 2
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- training_steps: 10000
Training results
Training Loss | Epoch | Step | F1 | Validation Loss | Precision | Recall |
---|---|---|---|---|---|---|
0.0661 | 41.67 | 500 | 0.3769 | 0.2542 | 0.3360 | 0.4293 |
0.0547 | 83.33 | 1000 | 0.4404 | 0.2624 | 0.3805 | 0.5227 |
0.0671 | 125.0 | 1500 | 0.4580 | 0.2623 | 0.4031 | 0.5303 |
0.0284 | 166.67 | 2000 | 0.4764 | 0.3800 | 0.4142 | 0.5606 |
0.0177 | 208.33 | 2500 | 0.4883 | 0.3349 | 0.4371 | 0.5530 |
0.0164 | 250.0 | 3000 | 0.4926 | 0.3123 | 0.4491 | 0.5455 |
0.0081 | 291.67 | 3500 | 0.4966 | 0.3830 | 0.4458 | 0.5606 |
0.0067 | 333.33 | 4000 | 0.4916 | 0.3459 | 0.4424 | 0.5530 |
0.0048 | 375.0 | 4500 | 0.4989 | 0.4200 | 0.4527 | 0.5556 |
0.0112 | 416.67 | 5000 | 0.5158 | 0.4377 | 0.4672 | 0.5758 |
0.0052 | 458.33 | 5500 | 0.5085 | 0.4983 | 0.4619 | 0.5657 |
0.0023 | 500.0 | 6000 | 0.5086 | 0.5621 | 0.4654 | 0.5606 |
0.0022 | 541.67 | 6500 | 0.5074 | 0.5063 | 0.4635 | 0.5606 |
0.0083 | 583.33 | 7000 | 0.5109 | 0.5471 | 0.4693 | 0.5606 |
0.0023 | 625.0 | 7500 | 0.5028 | 0.5268 | 0.4559 | 0.5606 |
0.0027 | 666.67 | 8000 | 0.5098 | 0.5385 | 0.4674 | 0.5606 |
0.0078 | 708.33 | 8500 | 0.4581 | 0.5657 | 0.5062 | 0.5135 |
0.0015 | 750.0 | 9000 | 0.4702 | 0.5581 | 0.5104 | 0.5301 |
0.0043 | 791.67 | 9500 | 0.4595 | 0.5581 | 0.5040 | 0.5684 |
0.0007 | 833.33 | 10000 | 0.4587 | 0.5606 | 0.5045 | 0.5711 |
Framework versions
- Transformers 4.38.2
- Pytorch 2.1.0+cu121
- Datasets 2.18.0
- Tokenizers 0.15.1
- Downloads last month
- 1