LiLT-RE-FR-SIN / README.md
kavg's picture
LiLT-RE-FR-SIN
9d2565a verified
metadata
license: mit
base_model: kavg/LiLT-RE-FR
tags:
  - generated_from_trainer
datasets:
  - xfun
metrics:
  - precision
  - recall
  - f1
model-index:
  - name: checkpoints
    results: []

checkpoints

This model is a fine-tuned version of kavg/LiLT-RE-FR on the xfun dataset. It achieves the following results on the evaluation set:

  • Precision: 0.3604
  • Recall: 0.5707
  • F1: 0.4418
  • Loss: 0.2693

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 1e-05
  • train_batch_size: 8
  • eval_batch_size: 2
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.1
  • training_steps: 10000

Training results

Training Loss Epoch Step Precision Recall F1 Validation Loss
0.0868 41.67 500 0.3688 0.2803 0.3185 0.1679
0.0557 83.33 1000 0.3604 0.5707 0.4418 0.2693
0.0513 125.0 1500 0.3962 0.5833 0.4719 0.3008
0.0248 166.67 2000 0.4043 0.6237 0.4906 0.4857
0.0139 208.33 2500 0.4296 0.6010 0.5011 0.4227
0.004 250.0 3000 0.4177 0.6212 0.4995 0.5369
0.0084 291.67 3500 0.4255 0.6490 0.514 0.5332
0.0067 333.33 4000 0.4259 0.6389 0.5111 0.4978
0.0008 375.0 4500 0.4189 0.6263 0.5020 0.4567
0.0116 416.67 5000 0.4336 0.6515 0.5207 0.5514
0.0007 458.33 5500 0.4394 0.6414 0.5216 0.5703
0.0004 500.0 6000 0.4504 0.6540 0.5335 0.6107
0.002 541.67 6500 0.4480 0.6414 0.5275 0.5859
0.0059 583.33 7000 0.4526 0.6263 0.5254 0.6033
0.0023 625.0 7500 0.4379 0.6414 0.5205 0.6440
0.0007 666.67 8000 0.4499 0.6237 0.5228 0.5594
0.003 708.33 8500 0.4393 0.6490 0.5240 0.6276
0.0001 750.0 9000 0.4410 0.6515 0.5260 0.6132
0.001 791.67 9500 0.4376 0.6288 0.5161 0.6312
0.0001 833.33 10000 0.4415 0.6389 0.5222 0.6304

Framework versions

  • Transformers 4.38.2
  • Pytorch 2.1.0+cu121
  • Datasets 2.18.0
  • Tokenizers 0.15.1