Supported Labels
['Dry_joint', 'Incorrect_installation', 'PCB_damage', 'Short_circuit']
How to use
- Install ultralyticsplus:
pip install ultralyticsplus==0.0.24 ultralytics==8.0.23
- Load model and perform prediction:
from ultralyticsplus import YOLO, render_result
# load model
model = YOLO('keremberke/yolov8m-pcb-defect-segmentation')
# set model parameters
model.overrides['conf'] = 0.25 # NMS confidence threshold
model.overrides['iou'] = 0.45 # NMS IoU threshold
model.overrides['agnostic_nms'] = False # NMS class-agnostic
model.overrides['max_det'] = 1000 # maximum number of detections per image
# set image
image = 'https://github.com/ultralytics/yolov5/raw/master/data/images/zidane.jpg'
# perform inference
results = model.predict(image)
# observe results
print(results[0].boxes)
print(results[0].masks)
render = render_result(model=model, image=image, result=results[0])
render.show()
More models available at: awesome-yolov8-models
- Downloads last month
- 4,889
Inference API (serverless) has been turned off for this model.
Dataset used to train keremberke/yolov8m-pcb-defect-segmentation
Evaluation results
- mAP@0.5(box) on pcb-defect-segmentationvalidation set self-reported0.568
- mAP@0.5(mask) on pcb-defect-segmentationvalidation set self-reported0.557