keremberke's picture
Update README.md
5d1802c
metadata
tags:
  - ultralyticsplus
  - yolov8
  - ultralytics
  - yolo
  - vision
  - image-classification
  - pytorch
  - awesome-yolov8-models
library_name: ultralytics
library_version: 8.0.21
inference: false
datasets:
  - keremberke/pokemon-classification
model-index:
  - name: keremberke/yolov8n-pokemon-classification
    results:
      - task:
          type: image-classification
        dataset:
          type: keremberke/pokemon-classification
          name: pokemon-classification
          split: validation
        metrics:
          - type: accuracy
            value: 0.02322
            name: top1 accuracy
          - type: accuracy
            value: 0.09016
            name: top5 accuracy
keremberke/yolov8n-pokemon-classification

Supported Labels

['Abra', 'Aerodactyl', 'Alakazam', 'Alolan Sandslash', 'Arbok', 'Arcanine', 'Articuno', 'Beedrill', 'Bellsprout', 'Blastoise', 'Bulbasaur', 'Butterfree', 'Caterpie', 'Chansey', 'Charizard', 'Charmander', 'Charmeleon', 'Clefable', 'Clefairy', 'Cloyster', 'Cubone', 'Dewgong', 'Diglett', 'Ditto', 'Dodrio', 'Doduo', 'Dragonair', 'Dragonite', 'Dratini', 'Drowzee', 'Dugtrio', 'Eevee', 'Ekans', 'Electabuzz', 'Electrode', 'Exeggcute', 'Exeggutor', 'Farfetchd', 'Fearow', 'Flareon', 'Gastly', 'Gengar', 'Geodude', 'Gloom', 'Golbat', 'Goldeen', 'Golduck', 'Golem', 'Graveler', 'Grimer', 'Growlithe', 'Gyarados', 'Haunter', 'Hitmonchan', 'Hitmonlee', 'Horsea', 'Hypno', 'Ivysaur', 'Jigglypuff', 'Jolteon', 'Jynx', 'Kabuto', 'Kabutops', 'Kadabra', 'Kakuna', 'Kangaskhan', 'Kingler', 'Koffing', 'Krabby', 'Lapras', 'Lickitung', 'Machamp', 'Machoke', 'Machop', 'Magikarp', 'Magmar', 'Magnemite', 'Magneton', 'Mankey', 'Marowak', 'Meowth', 'Metapod', 'Mew', 'Mewtwo', 'Moltres', 'MrMime', 'Muk', 'Nidoking', 'Nidoqueen', 'Nidorina', 'Nidorino', 'Ninetales', 'Oddish', 'Omanyte', 'Omastar', 'Onix', 'Paras', 'Parasect', 'Persian', 'Pidgeot', 'Pidgeotto', 'Pidgey', 'Pikachu', 'Pinsir', 'Poliwag', 'Poliwhirl', 'Poliwrath', 'Wigglytuff', 'Zapdos', 'Zubat']

How to use

pip install ultralyticsplus==0.0.23 ultralytics==8.0.21
  • Load model and perform prediction:
from ultralyticsplus import YOLO, postprocess_classify_output

# load model
model = YOLO('keremberke/yolov8n-pokemon-classification')

# set model parameters
model.overrides['conf'] = 0.25  # model confidence threshold

# set image
image = 'https://github.com/ultralytics/yolov5/raw/master/data/images/zidane.jpg'

# perform inference
results = model.predict(image)

# observe results
print(results[0].probs) # [0.1, 0.2, 0.3, 0.4]
processed_result = postprocess_classify_output(model, result=results[0])
print(processed_result) # {"cat": 0.4, "dog": 0.6}

More models available at: awesome-yolov8-models