shlm-grc-en / modeling_hlm.py
kevinkrahn's picture
Add new SentenceTransformer model.
891db93 verified
raw
history blame contribute delete
No virus
27 kB
import torch
from torch import nn
import torch.nn.functional as F
from dataclasses import dataclass
import copy
from transformers.modeling_outputs import BaseModelOutput, ModelOutput, MaskedLMOutput, TokenClassifierOutput, SequenceClassifierOutput
from transformers.modeling_utils import PreTrainedModel
from transformers import AutoConfig, AutoModel, AutoModelForTokenClassification, AutoModelForMaskedLM, AutoTokenizer, AutoModelForSequenceClassification
from .configuration_hlm import HLMConfig, HLMEncoderConfig
from .tokenization_hlm import HLMTokenizer
from typing import Tuple, Optional, Union
@dataclass
class HLMBaseModelOutput(ModelOutput):
last_hidden_state: torch.FloatTensor = None
hidden_states: Tuple[torch.FloatTensor] = None
attentions: Tuple[torch.FloatTensor] = None # Not currently supported
initial_embeds: torch.FloatTensor = None
initial_word_embeds: torch.FloatTensor = None
intra_word_mask: torch.LongTensor = None
char_embeds: torch.LongTensor = None
input_shape: Tuple[int, int, int, int] = None
class HLMEncoder(nn.Module):
def __init__(self, config) -> None:
super().__init__()
if config.sandwich_size > 0:
sandwich_start_index = config.num_hidden_layers // 2 - config.sandwich_size
sandwich_indices = [sandwich_start_index + i*2 + 1 for i in range(config.sandwich_size)]
#print('Sandwich indices:', sandwich_indices)
self.layers = nn.ModuleList([
TransformerBlock(config, bias=i in sandwich_indices) for i in range(config.num_hidden_layers)])
for i in range(config.sandwich_size):
self.layers[sandwich_start_index + i*2+1].make_sandwich(self.layers[sandwich_start_index + i*2])
else:
self.layers = nn.ModuleList([TransformerBlock(config) for _ in range(config.num_hidden_layers)])
def _get_attention_mask(self, attn_mask, dtype):
if attn_mask.dim() <= 2:
extended_mask = attn_mask.unsqueeze(1).unsqueeze(2)
extended_mask = extended_mask*extended_mask.squeeze(-2).unsqueeze(-1)
elif attn_mask.dim() == 3:
extended_mask = attn_mask.unsqueeze(1)
else:
extended_mask = attn_mask
# Convert to float to avoid zero in denominator of softmax in SDPA, resulting in NaNs
min_dtype = torch.finfo(dtype).min
extended_mask = ((1.0 - extended_mask.float()) * min_dtype)
# SDPA returns NaNs for fully masked rows, so attend to all tokens instead
extended_mask = extended_mask.mul(~torch.all(extended_mask==min_dtype, dim=-1, keepdim=True))
return extended_mask
def forward(self, hidden_states, attention_mask, freqs_cos, freqs_sin, return_dict=True, output_hidden_states=False):
all_hidden_states = []
attn_mask = self._get_attention_mask(attention_mask, hidden_states.dtype)
for layer in self.layers:
hidden_states = layer(hidden_states, attn_mask, freqs_cos, freqs_sin)
all_hidden_states.append(hidden_states)
if return_dict:
return BaseModelOutput(
last_hidden_state=all_hidden_states[-1],
hidden_states=all_hidden_states if output_hidden_states else None,
attentions=None,
)
else:
return (all_hidden_states[-1], all_hidden_states) if output_hidden_states else all_hidden_states
class HLMPreTrainedModel(PreTrainedModel):
"""
An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained
models.
"""
config_class = HLMConfig
base_model_prefix = "hlm"
_keys_to_ignore_on_load_unexpected = []
supports_gradient_checkpointing = True
def _init_weights(self, module):
"""Initialize the weights."""
if isinstance(module, nn.Linear):
module.weight.data.normal_(mean=0.0, std=self.config.initializer_range)
if module.bias is not None:
module.bias.data.zero_()
elif isinstance(module, nn.Embedding):
module.weight.data.normal_(mean=0.0, std=self.config.initializer_range)
if module.padding_idx is not None:
module.weight.data[module.padding_idx].zero_()
class HLMModel(HLMPreTrainedModel):
def __init__(self, config):
super().__init__(config)
self.config = config
self.char_embeddings = nn.Embedding(config.vocab_size, config.intra_word_encoder.hidden_size, padding_idx=0)
self.char_embedding_dropout = nn.Dropout(config.intra_word_encoder.dropout_prob)
if self.config.embedding_size != -1 and self.config.embedding_size != self.config.intra_word_encoder.hidden_size:
self.char_embedding_project = nn.Linear(self.config.embedding_size, self.config.intra_word_encoder.hidden_size, bias=False)
freqs_cos, freqs_sin = precompute_freqs_cis(config.intra_word_encoder.hidden_size // config.intra_word_encoder.num_attention_heads, config.max_seq_length)
self.register_buffer("freqs_cos", freqs_cos)
self.register_buffer("freqs_sin", freqs_sin)
self.word_type_embeddings = nn.Embedding(config.type_vocab_size, config.intra_word_encoder.hidden_size)
self.intra_word_encoder = HLMEncoder(config.intra_word_encoder)
if self.config.intra_word_encoder.hidden_size != self.config.inter_word_encoder.hidden_size:
self.intra_word_project = nn.Linear(self.config.intra_word_encoder.hidden_size, self.config.inter_word_encoder.hidden_size, bias=False)
self.inter_word_encoder = HLMEncoder(config.inter_word_encoder)
# Initialize weights and apply final processing
self.post_init()
def get_input_embeddings(self):
return self.char_embeddings
def set_input_embeddings(self, new_embeddings):
self.char_embeddings = new_embeddings
def forward(self, input_ids, char_input_mask, word_input_mask, word_type_ids=None, combined_word_embeddings: Optional[bool]=False, output_hidden_states: Optional[bool]=False, return_dict: Optional[bool]=True):
input_embeds = self.char_embeddings(input_ids)
input_embeds = self.char_embedding_dropout(input_embeds)
if hasattr(self, "char_embedding_project"):
input_embeds = self.char_embedding_project(input_embeds)
batch_size, num_word, _, _ = input_embeds.shape
num_char = self.config.max_word_length
# reshape to attend to intra-word tokens rather than full sequence
input_embeds = input_embeds.view(batch_size * num_word, num_char, self.config.intra_word_encoder.hidden_size)
intra_word_mask = char_input_mask.view(batch_size * num_word, num_char)
intra_word_output = self.intra_word_encoder(
input_embeds,
intra_word_mask,
self.freqs_cos[:num_char],
self.freqs_sin[:num_char],
output_hidden_states=False,
return_dict=True,
)
initial_embeds = intra_word_output.last_hidden_state
# extract [WORD_CLS] embeddings, which are always at the beginning of each word
initial_word_embeds = initial_embeds[:,0,:]
if word_type_ids is not None:
word_type_embeds = self.word_type_embeddings(word_type_ids)
word_type_embeds = word_type_embeds.view(batch_size * num_word, self.config.intra_word_encoder.hidden_size)
initial_word_embeds = initial_word_embeds + word_type_embeds
if hasattr(self, "intra_word_project"):
initial_embeds = self.intra_word_project(initial_embeds)
# reshape and extract contextualized inter-word representation
word_embeds = initial_word_embeds.view(batch_size, num_word, self.config.inter_word_encoder.hidden_size)
inter_word_output = self.inter_word_encoder(
word_embeds,
word_input_mask,
self.freqs_cos[:num_word],
self.freqs_sin[:num_word],
output_hidden_states=output_hidden_states,
return_dict=True,
)
if combined_word_embeddings:
initial_word_embeds = initial_word_embeds.view(batch_size, num_word, self.config.inter_word_encoder.hidden_size)
contextual_word_embeds = inter_word_output.last_hidden_state
combined_word_embeds = torch.cat([initial_word_embeds, contextual_word_embeds], dim=2)
last_hidden_state = combined_word_embeds
else:
last_hidden_state = inter_word_output.last_hidden_state
if return_dict:
return HLMBaseModelOutput(
last_hidden_state=last_hidden_state,
hidden_states=inter_word_output.hidden_states if output_hidden_states else None,
initial_embeds=initial_embeds,
initial_word_embeds=initial_word_embeds,
intra_word_mask=intra_word_mask,
char_embeds=input_embeds,
input_shape=(batch_size, num_word, num_char, self.config.inter_word_encoder.hidden_size),
)
else:
return (
last_hidden_state,
inter_word_output.hidden_states if output_hidden_states else None,
initial_embeds,
initial_word_embeds,
intra_word_mask,
input_embeds,
(batch_size, num_word, num_char, self.config.inter_word_encoder.hidden_size),
)
def reshape_for_broadcast(freqs_cis: torch.Tensor, x: torch.Tensor):
ndim = x.ndim
assert 0 <= 1 < ndim
assert freqs_cis.shape == (x.shape[1], x.shape[-1])
shape = [d if i == 1 or i == ndim - 1 else 1 for i, d in enumerate(x.shape)]
return freqs_cis.view(*shape)
def apply_rotary_emb(xq: torch.Tensor, xk: torch.Tensor, freqs_cos: torch.Tensor, freqs_sin: torch.Tensor) -> Tuple[torch.Tensor, torch.Tensor]:
# reshape xq and xk to match the complex representation
xq_r, xq_i = xq.float().reshape(*xq.shape[:-1], -1, 2).unbind(-1)
xk_r, xk_i = xk.float().reshape(*xk.shape[:-1], -1, 2).unbind(-1)
# reshape freqs_cos and freqs_sin for broadcasting
freqs_cos = reshape_for_broadcast(freqs_cos, xq_r)
freqs_sin = reshape_for_broadcast(freqs_sin, xq_r)
# apply rotation using real numbers
xq_out_r = xq_r * freqs_cos - xq_i * freqs_sin
xq_out_i = xq_r * freqs_sin + xq_i * freqs_cos
xk_out_r = xk_r * freqs_cos - xk_i * freqs_sin
xk_out_i = xk_r * freqs_sin + xk_i * freqs_cos
# flatten last two dimensions
xq_out = torch.stack([xq_out_r, xq_out_i], dim=-1).flatten(3)
xk_out = torch.stack([xk_out_r, xk_out_i], dim=-1).flatten(3)
return xq_out.type_as(xq), xk_out.type_as(xk)
def precompute_freqs_cis(dim: int, end: int, theta: float = 10000.0):
freqs = 1.0 / (
theta ** (torch.arange(0, dim, 2)[: (dim // 2)].float() / dim)
)
t = torch.arange(end, device=freqs.device) # type: ignore
freqs = torch.outer(t, freqs).float() # type: ignore
freqs_cos = torch.cos(freqs) # real part
freqs_sin = torch.sin(freqs) # imaginary part
return freqs_cos, freqs_sin
class RMSNorm(torch.nn.Module):
def __init__(self, dim: int, eps: float = 1e-6):
super().__init__()
self.eps = eps
self.weight = nn.Parameter(torch.ones(dim))
def _norm(self, x):
return x * torch.rsqrt(x.pow(2).mean(-1, keepdim=True) + self.eps)
def forward(self, x):
output = self._norm(x.float()).type_as(x)
return output * self.weight
class TransformerBlock(nn.Module):
def __init__(self, config: HLMEncoderConfig, bias: bool = False):
super().__init__()
self.pad_id = config.pad_token_id
self.drop_p = config.dropout_prob
self.n_heads = config.num_attention_heads
self.d_head = config.hidden_size // config.num_attention_heads
self.has_bias = bias
dim = config.hidden_size
# Attention
self.q = nn.Linear(in_features=dim, out_features=dim, bias=bias)
self.k = nn.Linear(in_features=dim, out_features=dim, bias=bias)
self.v = nn.Linear(in_features=dim, out_features=dim, bias=bias)
self.att_proj_linear = nn.Linear(in_features=dim, out_features=dim, bias=bias)
self.resid_dropout = nn.Dropout(self.drop_p)
# Feedforward layer
self.ff_dropout = nn.Dropout(self.drop_p)
self.ff_linear_1 = nn.Linear(in_features=dim, out_features=config.intermediate_size, bias=bias)
self.ff_linear_2 = nn.Linear(in_features=config.intermediate_size, out_features=dim, bias=bias)
self.ff_linear_3 = nn.Linear(in_features=dim, out_features=config.intermediate_size, bias=bias)
# Pre-layer norms
self.attn_norm = RMSNorm(dim, eps=config.layer_norm_eps)
self.ff_norm = RMSNorm(dim, eps=config.layer_norm_eps)
def make_sandwich(self, other):
assert self.has_bias
assert not other.has_bias
self.q.weight = other.q.weight
self.k.weight = other.k.weight
self.v.weight = other.v.weight
self.att_proj_linear.weight = other.att_proj_linear.weight
self.ff_linear_1.weight = other.ff_linear_1.weight
self.ff_linear_2.weight = other.ff_linear_2.weight
self.ff_linear_3.weight = other.ff_linear_3.weight
def forward(self, x: torch.Tensor, pad_mask: torch.Tensor, freqs_cos: torch.Tensor, freqs_sin: torch.Tensor):
x = x + self._attention_block(self.attn_norm(x), pad_mask, freqs_cos, freqs_sin)
x = x + self._feedforward_block(self.ff_norm(x))
return x
def _attention_block(self, x: torch.Tensor, attn_mask: torch.Tensor, freqs_cos: torch.Tensor, freqs_sin: torch.Tensor):
batch_size, seq_len, _ = x.shape
xq, xk, xv = self.q(x), self.k(x), self.v(x)
# Reshape for rotary embeddings
xq = xq.view(batch_size, seq_len, self.n_heads, self.d_head)
xk = xk.view(batch_size, seq_len, self.n_heads, self.d_head)
xv = xv.view(batch_size, seq_len, self.n_heads, self.d_head)
xq, xk = apply_rotary_emb(xq, xk, freqs_cos, freqs_sin)
# Reshape for attention calculation: (b_sz, n_head, s_len, d_head)
xq = xq.transpose(1, 2)
xk = xk.transpose(1, 2)
xv = xv.transpose(1, 2)
att = F.scaled_dot_product_attention(
query=xq, key=xk, value=xv,
attn_mask=attn_mask,
dropout_p=self.drop_p if self.training else 0.0,
is_causal=False,
)
# Shape (b_sz, s_len, n_head, d_head)
out = att.transpose(1, 2).contiguous()
out = out.view(batch_size, seq_len, self.n_heads * self.d_head)
return self.resid_dropout(self.att_proj_linear(out))
def _feedforward_block(self, x: torch.Tensor):
# SWiGLU activation
x = self.ff_linear_2(F.silu(self.ff_linear_1(x)) * self.ff_linear_3(x))
x = self.ff_dropout(x)
return x
class HLMForMaskedLM(HLMPreTrainedModel):
_tied_weights_keys = ["cls.decoder.weight", "cls.decoder.bias"]
def __init__(self, config):
super().__init__(config)
# NOTE: This property name must match "base_model_prefix" in the base class
self.hlm = HLMModel(config)
self.cls = HLMLMPredictionHead(config)
# Initialize weights and apply final processing
self.post_init()
def get_output_embeddings(self):
return self.cls.decoder
def set_output_embeddings(self, new_embeddings):
self.cls.decoder = new_embeddings
def forward(
self,
input_ids: Optional[torch.Tensor] = None,
labels: Optional[torch.Tensor] = None,
char_input_mask: Optional[torch.Tensor] = None,
word_input_mask: Optional[torch.Tensor] = None,
word_type_ids: Optional[torch.Tensor] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = True,
) -> Union[Tuple, MaskedLMOutput]:
r"""
labels (`torch.LongTensor` of shape `(batch_size, num_words, max_chars_per_word)`, *optional*):
Labels for computing the masked language modeling loss. Indices should be in `[-100, 0, ...,
config.vocab_size]` (see `input_ids` docstring) Tokens with indices set to `-100` are ignored (masked), the
loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]`
"""
outputs = self.hlm(
input_ids,
char_input_mask=char_input_mask,
word_input_mask=word_input_mask,
word_type_ids=word_type_ids,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
combined_word_embeddings=False,
)
prediction_scores = self.cls(outputs,
freqs_cos=self.hlm.freqs_cos[:self.config.max_word_length],
freqs_sin=self.hlm.freqs_sin[:self.config.max_word_length])
masked_lm_loss = None
if labels is not None:
loss_fct = nn.CrossEntropyLoss() # -100 index = padding token
masked_lm_loss = loss_fct(prediction_scores.view(-1, self.config.vocab_size), labels.view(-1))
if not return_dict:
output = (prediction_scores,) + outputs[1:]
return ((masked_lm_loss,) + output) if masked_lm_loss is not None else output
else:
return MaskedLMOutput(
loss=masked_lm_loss,
logits=prediction_scores,
hidden_states=outputs.hidden_states,
)
class HLMLMPredictionHead(nn.Module):
def __init__(self, config):
super().__init__()
intra_word_encoder_config = copy.copy(config.intra_word_encoder)
intra_word_encoder_config.num_hidden_layers = 1
intra_word_encoder_config.sandwich_size = 0
self.intra_word_encoder = HLMEncoder(intra_word_encoder_config)
self.residual_word_embedding = getattr(config, 'residual_word_embedding', False)
self.config = config
if self.config.intra_word_encoder.hidden_size != self.config.inter_word_encoder.hidden_size:
self.inter_word_project = nn.Linear(config.inter_word_encoder.hidden_size, self.config.intra_word_encoder.hidden_size, bias=False)
if getattr(config, "tie_word_embeddings", True):
# The output weights are the same as the input embeddings, but there is
# an output-only bias for each token.
self.decoder = nn.Linear(config.intra_word_encoder.hidden_size, config.vocab_size, bias=False)
self.bias = nn.Parameter(torch.zeros(config.vocab_size))
# Need a link between the two variables so that the bias is correctly resized with `resize_token_embeddings`
self.decoder.bias = self.bias
else:
self.decoder = nn.Linear(config.intra_word_encoder.hidden_size, config.vocab_size)
def forward(self, base_model_output: HLMBaseModelOutput, freqs_cos: torch.Tensor, freqs_sin: torch.Tensor):
batch_size, num_word, _, _ = base_model_output.input_shape
word_embeds = base_model_output.last_hidden_state.reshape(batch_size * num_word, 1, self.config.inter_word_encoder.hidden_size)
if self.residual_word_embedding:
# residual connection between initial word embeddings and contextual word embeddings as mentioned in the paper (section A.3)
word_embeds += base_model_output.initial_word_embeds.unsqueeze(1)
if hasattr(self, "inter_word_project"):
word_embeds = self.inter_word_project(word_embeds)
# concatenate to restore the character-level token sequence
char_embeds = torch.cat([word_embeds, base_model_output.initial_embeds[:,1:,:]], dim=1)
intra_word_output = self.intra_word_encoder(
char_embeds,
base_model_output.intra_word_mask,
freqs_cos, freqs_sin,
output_hidden_states=False,
return_dict=True,
)
char_logits = self.decoder(intra_word_output.last_hidden_state)
batch_size, num_word, num_char, _ = base_model_output.input_shape
char_logits = char_logits.reshape(batch_size, num_word * num_char, -1)
return char_logits
class HLMForTokenClassification(HLMPreTrainedModel):
def __init__(self, config):
super().__init__(config)
self.num_labels = config.num_labels
self.hlm = HLMModel(config)
self.cls = nn.Linear(config.inter_word_encoder.hidden_size*2, config.num_labels)
# Initialize weights and apply final processing
self.post_init()
def forward(
self,
input_ids: Optional[torch.Tensor] = None,
char_input_mask: Optional[torch.Tensor] = None,
word_input_mask: Optional[torch.Tensor] = None,
labels: Optional[torch.Tensor] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
) -> Union[Tuple, TokenClassifierOutput]:
r"""
labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
Labels for computing the token classification loss. Indices should be in `[0, ..., config.num_labels - 1]`.
"""
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
outputs = self.hlm(
input_ids,
char_input_mask=char_input_mask,
word_input_mask=word_input_mask,
output_hidden_states=output_hidden_states,
combined_word_embeddings=True,
)
logits = self.cls(outputs.last_hidden_state)
loss = None
if labels is not None:
loss_fct = nn.CrossEntropyLoss()
loss = loss_fct(logits.view(-1, self.num_labels), labels.view(-1))
if not return_dict:
output = (logits,) + outputs[1:]
return ((loss,) + output) if loss is not None else output
return TokenClassifierOutput(
loss=loss, logits=logits, hidden_states=outputs.hidden_states, attentions=outputs.attentions
)
class HLMForSequenceClassification(HLMPreTrainedModel):
def __init__(self, config):
super().__init__(config)
self.config = config
self.num_labels = getattr(config, 'num_labels', 2)
self.hlm = HLMModel(config)
self.dense = nn.Linear(config.inter_word_encoder.hidden_size, config.inter_word_encoder.hidden_size)
self.dropout = nn.Dropout(0.1)
self.classifier = nn.Linear(config.inter_word_encoder.hidden_size, config.num_labels)
#self.activation = SwiGLU()
self.activation = nn.GELU()
# Initialize weights and apply final processing
self.post_init()
def forward(
self,
input_ids: Optional[torch.Tensor] = None,
char_input_mask: Optional[torch.Tensor] = None,
word_input_mask: Optional[torch.Tensor] = None,
word_type_ids: Optional[torch.Tensor] = None,
labels: Optional[torch.Tensor] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
) -> Union[Tuple, SequenceClassifierOutput]:
r"""
labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
Labels for computing the token classification loss. Indices should be in `[0, ..., config.num_labels - 1]`.
"""
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
outputs = self.hlm(
input_ids,
char_input_mask=char_input_mask,
word_input_mask=word_input_mask,
word_type_ids=word_type_ids,
output_hidden_states=output_hidden_states,
combined_word_embeddings=False,
)
emb = outputs.last_hidden_state[:, 0]
emb = self.dense(emb)
emb = self.activation(emb)
emb = self.dropout(emb)
logits = self.classifier(emb)
loss = None
if labels is not None:
if self.config.problem_type is None:
if self.num_labels == 1:
# regression task
loss_fn = nn.MSELoss()
logits = logits.view(-1).to(labels.dtype)
loss = loss_fn(logits, labels.view(-1))
elif labels.dim() == 1 or labels.size(-1) == 1:
label_index = (labels >= 0).nonzero()
labels = labels.long()
if label_index.size(0) > 0:
labeled_logits = torch.gather(
logits, 0, label_index.expand(label_index.size(0), logits.size(1))
)
labels = torch.gather(labels, 0, label_index.view(-1))
loss_fct = nn.CrossEntropyLoss()
loss = loss_fct(labeled_logits.view(-1, self.num_labels).float(), labels.view(-1))
else:
loss = torch.tensor(0).to(logits)
else:
log_softmax = nn.LogSoftmax(-1)
loss = -((log_softmax(logits) * labels).sum(-1)).mean()
elif self.config.problem_type == "regression":
loss_fct = nn.MSELoss()
if self.num_labels == 1:
loss = loss_fct(logits.squeeze(), labels.squeeze())
else:
loss = loss_fct(logits, labels)
elif self.config.problem_type == "single_label_classification":
loss_fct = nn.CrossEntropyLoss()
loss = loss_fct(logits.view(-1, self.num_labels), labels.view(-1))
elif self.config.problem_type == "multi_label_classification":
loss_fct = nn.BCEWithLogitsLoss()
loss = loss_fct(logits, labels)
if not return_dict:
output = (logits,) + outputs[1:]
return ((loss,) + output) if loss is not None else output
return SequenceClassifierOutput(
loss=loss, logits=logits, hidden_states=outputs.hidden_states)
AutoConfig.register("hlm", HLMConfig)
AutoModel.register(HLMConfig, HLMModel)
AutoModelForTokenClassification.register(HLMConfig, HLMForTokenClassification)
AutoModelForSequenceClassification.register(HLMConfig, HLMForSequenceClassification)
AutoModelForMaskedLM.register(HLMConfig, HLMForMaskedLM)
AutoTokenizer.register(HLMConfig, HLMTokenizer)
HLMConfig.register_for_auto_class()
HLMModel.register_for_auto_class("AutoModel")
HLMForMaskedLM.register_for_auto_class("AutoModelForMaskedLM")
HLMForSequenceClassification.register_for_auto_class("AutoModelForSequenceClassification")
HLMForTokenClassification.register_for_auto_class("AutoModelForTokenClassification")