khaoulaoub's picture
End of training
67b2a08
|
raw
history blame
3.63 kB
metadata
license: apache-2.0
base_model: facebook/wav2vec2-xls-r-300m
tags:
  - generated_from_trainer
metrics:
  - wer
model-index:
  - name: wav2vec2-finetune-XLSR_maroc
    results: []

wav2vec2-finetune-XLSR_maroc

This model is a fine-tuned version of facebook/wav2vec2-xls-r-300m on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 0.2804
  • Wer: 0.3265

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0003
  • train_batch_size: 16
  • eval_batch_size: 8
  • seed: 42
  • gradient_accumulation_steps: 2
  • total_train_batch_size: 32
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 500
  • num_epochs: 30

Training results

Training Loss Epoch Step Validation Loss Wer
4.9859 0.83 400 2.0919 0.9982
0.8639 1.66 800 0.4365 0.5925
0.4879 2.49 1200 0.3467 0.5079
0.3732 3.32 1600 0.3267 0.4756
0.314 4.15 2000 0.2835 0.4314
0.274 4.97 2400 0.2915 0.4364
0.2463 5.8 2800 0.3050 0.4277
0.2354 6.63 3200 0.2766 0.4179
0.2101 7.46 3600 0.2896 0.4071
0.1976 8.29 4000 0.2856 0.4099
0.186 9.12 4400 0.2849 0.3987
0.1758 9.95 4800 0.2819 0.4026
0.1667 10.78 5200 0.2869 0.3934
0.1508 11.61 5600 0.2793 0.3851
0.1468 12.44 6000 0.2777 0.3836
0.1322 13.26 6400 0.2731 0.3767
0.1295 14.09 6800 0.2833 0.3741
0.1157 14.92 7200 0.2815 0.3786
0.1147 15.75 7600 0.2684 0.3741
0.1099 16.58 8000 0.2704 0.3677
0.1056 17.41 8400 0.2744 0.3668
0.0983 18.24 8800 0.2675 0.3676
0.0975 19.07 9200 0.2787 0.3588
0.0906 19.9 9600 0.2749 0.3537
0.0862 20.73 10000 0.2875 0.3557
0.0812 21.55 10400 0.2863 0.3482
0.0761 22.38 10800 0.2739 0.3513
0.0738 23.21 11200 0.2878 0.3467
0.0678 24.04 11600 0.2886 0.3399
0.0661 24.87 12000 0.2958 0.3380
0.0623 25.7 12400 0.2779 0.3354
0.0586 26.53 12800 0.2871 0.3333
0.0563 27.36 13200 0.2895 0.3316
0.0554 28.19 13600 0.2846 0.3277
0.0522 29.02 14000 0.2752 0.3276
0.0498 29.84 14400 0.2804 0.3265

Framework versions

  • Transformers 4.34.1
  • Pytorch 2.1.0+cu118
  • Datasets 2.14.6
  • Tokenizers 0.14.1