khaoulaoub's picture
End of training
dad15dd
|
raw
history blame
3.63 kB
metadata
license: apache-2.0
base_model: facebook/wav2vec2-xls-r-300m
tags:
  - generated_from_trainer
metrics:
  - wer
model-index:
  - name: wav2vec2_XLSR_darija_maroc
    results: []

wav2vec2_XLSR_darija_maroc

This model is a fine-tuned version of facebook/wav2vec2-xls-r-300m on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 0.2740
  • Wer: 0.3247

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0003
  • train_batch_size: 16
  • eval_batch_size: 8
  • seed: 42
  • gradient_accumulation_steps: 2
  • total_train_batch_size: 32
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 500
  • num_epochs: 30

Training results

Training Loss Epoch Step Validation Loss Wer
4.9874 0.83 400 2.4916 0.9978
0.9314 1.66 800 0.4379 0.5839
0.4856 2.49 1200 0.3485 0.5001
0.3859 3.32 1600 0.3331 0.4768
0.3271 4.15 2000 0.2932 0.4369
0.2842 4.97 2400 0.2988 0.4422
0.2482 5.8 2800 0.2815 0.4174
0.2252 6.63 3200 0.2967 0.4316
0.2115 7.46 3600 0.2719 0.4007
0.1965 8.29 4000 0.2867 0.3985
0.1823 9.12 4400 0.2744 0.4008
0.1712 9.95 4800 0.2589 0.3873
0.156 10.78 5200 0.2589 0.3745
0.1536 11.61 5600 0.2628 0.3799
0.1404 12.44 6000 0.2704 0.3805
0.1402 13.26 6400 0.2748 0.3784
0.1305 14.09 6800 0.2780 0.3769
0.121 14.92 7200 0.2760 0.3698
0.1147 15.75 7600 0.2723 0.3733
0.1076 16.58 8000 0.2661 0.3671
0.1013 17.41 8400 0.2709 0.3665
0.0964 18.24 8800 0.2748 0.3599
0.0946 19.07 9200 0.2696 0.3550
0.0916 19.9 9600 0.2649 0.3596
0.0849 20.73 10000 0.2905 0.3573
0.0803 21.55 10400 0.2646 0.3496
0.0748 22.38 10800 0.2871 0.3486
0.0739 23.21 11200 0.2751 0.3432
0.0699 24.04 11600 0.2857 0.3426
0.0637 24.87 12000 0.2690 0.3377
0.0627 25.7 12400 0.2737 0.3371
0.0601 26.53 12800 0.2752 0.3358
0.0564 27.36 13200 0.2827 0.3329
0.0536 28.19 13600 0.2764 0.3310
0.0508 29.02 14000 0.2750 0.3281
0.0495 29.84 14400 0.2740 0.3247

Framework versions

  • Transformers 4.34.1
  • Pytorch 2.1.0+cu118
  • Datasets 2.14.6
  • Tokenizers 0.14.1