librarian-bot's picture
Librarian Bot: Add base_model information to model
7d725c4
|
raw
history blame
3.78 kB
metadata
language:
  - sv
license: apache-2.0
tags:
  - automatic-speech-recognition
  - robust-speech-event
  - hf-asr-leaderboard
datasets:
  - mozilla-foundation/common_voice_8_0
metrics:
  - wer
  - cer
base_model: facebook/wav2vec2-xls-r-1b
model-index:
  - name: wav2vec2-large-xls-r-1b-Swedish
    results:
      - task:
          type: automatic-speech-recognition
          name: Speech Recognition
        dataset:
          name: Common Voice sv-SE
          type: mozilla-foundation/common_voice_8_0
          args: sv-SE
        metrics:
          - type: wer
            value: 14.04
            name: Test WER With LM
          - type: cer
            value: 4.86
            name: Test CER  With LM
      - task:
          type: automatic-speech-recognition
          name: Automatic Speech Recognition
        dataset:
          name: Robust Speech Event - Dev Data
          type: speech-recognition-community-v2/dev_data
          args: sv
        metrics:
          - type: wer
            value: 29.69
            name: Test WER
          - type: cer
            value: 12.59
            name: Test CER

wav2vec2-large-xls-r-1b-Swedish

This model is a fine-tuned version of facebook/wav2vec2-xls-r-1b on the common_voice dataset. It achieves the following results on the evaluation set:

Without LM

  • Loss: 0.3370
  • Wer: 18.44
  • Cer: 5.75

With LM

  • Loss: 0.3370
  • Wer: 14.04
  • Cer: 4.86

Evaluation Commands

  1. To evaluate on mozilla-foundation/common_voice_8_0 with split test
python eval.py --model_id kingabzpro/wav2vec2-large-xls-r-1b-Swedish --dataset mozilla-foundation/common_voice_8_0 --config sv-SE --split test
  1. To evaluate on speech-recognition-community-v2/dev_data
python eval.py --model_id kingabzpro/wav2vec2-large-xls-r-1b-Swedish --dataset speech-recognition-community-v2/dev_data --config sv --split validation --chunk_length_s 5.0 --stride_length_s 1.0

Inference With LM

import torch
from datasets import load_dataset
from transformers import AutoModelForCTC, AutoProcessor
import torchaudio.functional as F
model_id = "kingabzpro/wav2vec2-large-xls-r-1b-Swedish"
sample_iter = iter(load_dataset("mozilla-foundation/common_voice_8_0", "sv-SE", split="test", streaming=True, use_auth_token=True))
sample = next(sample_iter)
resampled_audio = F.resample(torch.tensor(sample["audio"]["array"]), 48_000, 16_000).numpy()
model = AutoModelForCTC.from_pretrained(model_id)
processor = AutoProcessor.from_pretrained(model_id)
input_values = processor(resampled_audio, return_tensors="pt").input_values
with torch.no_grad():
    logits = model(input_values).logits
transcription = processor.batch_decode(logits.numpy()).text

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 7.5e-05
  • train_batch_size: 64
  • eval_batch_size: 8
  • seed: 42
  • gradient_accumulation_steps: 4
  • total_train_batch_size: 256
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 1000
  • num_epochs: 50
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Wer Cer
3.1562 11.11 500 0.4830 0.3729 0.1169
0.5655 22.22 1000 0.3553 0.2381 0.0743
0.3376 33.33 1500 0.3359 0.2179 0.0696
0.2419 44.44 2000 0.3232 0.1844 0.0575

Framework versions

  • Transformers 4.17.0.dev0
  • Pytorch 1.10.2+cu102
  • Datasets 1.18.2.dev0
  • Tokenizers 0.11.0