kingabzpro's picture
Update README.md
1be75b5
|
raw
history blame
3.49 kB
---
language:
- tt
license: apache-2.0
tags:
- automatic-speech-recognition
- robust-speech-event
datasets:
- mozilla-foundation/common_voice_8_0
metrics:
- wer
- cer
model-index:
- name: wav2vec2-large-xls-r-300m-Tatar
results:
- task:
type: automatic-speech-recognition # Required. Example: automatic-speech-recognition
name: Speech Recognition # Optional. Example: Speech Recognition
dataset:
type: mozilla-foundation/common_voice_8_0 # Required. Example: common_voice. Use dataset id from https://hf.co/datasets
name: Common Voice tt # Required. Example: Common Voice zh-CN
args: tt # Optional. Example: zh-CN
metrics:
- type: wer # Required. Example: wer
value: 42.71 # Required. Example: 20.90
name: Test WER With LM # Optional. Example: Test WER
- type: cer # Required. Example: wer
value: 11.18 # Required. Example: 20.90
name: Test CER With LM # Optional. Example: Test WER
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# wav2vec2-large-xls-r-300m-Tatar
This model is a fine-tuned version of [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) on the common_voice dataset.
It achieves the following results on the evaluation set:
- Loss: 0.5068
- Wer: 0.4263
- Cer: 0.1117
#### Evaluation Commands
1. To evaluate on `mozilla-foundation/common_voice_8_0` with split `test`
```bash
python eval.py --model_id kingabzpro/wav2vec2-large-xls-r-300m-Tatar --dataset mozilla-foundation/common_voice_8_0 --config tt --split test
```
### Inference With LM
```python
import torch
from datasets import load_dataset
from transformers import AutoModelForCTC, AutoProcessor
import torchaudio.functional as F
model_id = "kingabzpro/wav2vec2-large-xls-r-300m-Tatar"
sample_iter = iter(load_dataset("mozilla-foundation/common_voice_8_0", "tt", split="test", streaming=True, use_auth_token=True))
sample = next(sample_iter)
resampled_audio = F.resample(torch.tensor(sample["audio"]["array"]), 48_000, 16_000).numpy()
model = AutoModelForCTC.from_pretrained(model_id)
processor = AutoProcessor.from_pretrained(model_id)
input_values = processor(resampled_audio, return_tensors="pt").input_values
with torch.no_grad():
logits = model(input_values).logits
transcription = processor.batch_decode(logits.numpy()).text
```
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 7.5e-05
- train_batch_size: 64
- eval_batch_size: 8
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 256
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 1000
- num_epochs: 50
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss | Wer | Cer |
|:-------------:|:-----:|:----:|:---------------:|:------:|:------:|
| 8.4116 | 12.19 | 500 | 3.4118 | 1.0 | 1.0 |
| 2.5829 | 24.39 | 1000 | 0.7150 | 0.6151 | 0.1582 |
| 0.4492 | 36.58 | 1500 | 0.5378 | 0.4577 | 0.1210 |
| 0.3007 | 48.77 | 2000 | 0.5068 | 0.4263 | 0.1117 |
### Framework versions
- Transformers 4.17.0.dev0
- Pytorch 1.10.2+cu102
- Datasets 1.18.2.dev0
- Tokenizers 0.11.0