librarian-bot's picture
Librarian Bot: Add base_model information to model
a3611a6
|
raw
history blame
3.1 kB
metadata
language:
  - tt
license: apache-2.0
tags:
  - automatic-speech-recognition
  - robust-speech-event
  - hf-asr-leaderboard
datasets:
  - mozilla-foundation/common_voice_8_0
metrics:
  - wer
  - cer
base_model: facebook/wav2vec2-xls-r-300m
model-index:
  - name: wav2vec2-large-xls-r-300m-Tatar
    results:
      - task:
          type: automatic-speech-recognition
          name: Speech Recognition
        dataset:
          name: Common Voice tt
          type: mozilla-foundation/common_voice_8_0
          args: tt
        metrics:
          - type: wer
            value: 42.71
            name: Test WER With LM
          - type: cer
            value: 11.18
            name: Test CER With LM

wav2vec2-large-xls-r-300m-Tatar

This model is a fine-tuned version of facebook/wav2vec2-xls-r-300m on the common_voice dataset. It achieves the following results on the evaluation set:

  • Loss: 0.5068
  • Wer: 0.4263
  • Cer: 0.1117

Evaluation Commands

  1. To evaluate on mozilla-foundation/common_voice_8_0 with split test
python eval.py --model_id kingabzpro/wav2vec2-large-xls-r-300m-Tatar --dataset mozilla-foundation/common_voice_8_0 --config tt --split test

Inference With LM

import torch
from datasets import load_dataset
from transformers import AutoModelForCTC, AutoProcessor
import torchaudio.functional as F
model_id = "kingabzpro/wav2vec2-large-xls-r-300m-Tatar"
sample_iter = iter(load_dataset("mozilla-foundation/common_voice_8_0", "tt", split="test", streaming=True, use_auth_token=True))
sample = next(sample_iter)
resampled_audio = F.resample(torch.tensor(sample["audio"]["array"]), 48_000, 16_000).numpy()
model = AutoModelForCTC.from_pretrained(model_id)
processor = AutoProcessor.from_pretrained(model_id)
input_values = processor(resampled_audio, return_tensors="pt").input_values
with torch.no_grad():
    logits = model(input_values).logits
transcription = processor.batch_decode(logits.numpy()).text

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 7.5e-05
  • train_batch_size: 64
  • eval_batch_size: 8
  • seed: 42
  • gradient_accumulation_steps: 4
  • total_train_batch_size: 256
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 1000
  • num_epochs: 50
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Wer Cer
8.4116 12.19 500 3.4118 1.0 1.0
2.5829 24.39 1000 0.7150 0.6151 0.1582
0.4492 36.58 1500 0.5378 0.4577 0.1210
0.3007 48.77 2000 0.5068 0.4263 0.1117

Framework versions

  • Transformers 4.17.0.dev0
  • Pytorch 1.10.2+cu102
  • Datasets 1.18.2.dev0
  • Tokenizers 0.11.0