See axolotl config
axolotl version: 0.4.0
base_model: meta-llama/Meta-Llama-3-8B
model_type: LlamaForCausalLM
tokenizer_type: AutoTokenizer
load_in_8bit: true
load_in_4bit: false
strict: false
datasets:
- path: kloodia/alpaca_french
type: oasst
dataset_prepared_path:
val_set_size: 0.05
output_dir: ./lora-out-french-alpaca
sequence_len: 4096
sample_packing: true
pad_to_sequence_len: true
adapter: lora
lora_model_dir:
lora_r: 32
lora_alpha: 16
lora_dropout: 0.05
lora_target_linear: true
lora_fan_in_fan_out:
wandb_project:
wandb_entity:
wandb_watch:
wandb_name:
wandb_log_model:
gradient_accumulation_steps: 4
micro_batch_size: 1
num_epochs: 4
optimizer: adamw_bnb_8bit
lr_scheduler: cosine
learning_rate: 0.0002
train_on_inputs: false
group_by_length: false
bf16: auto
fp16:
tf32: false
gradient_checkpointing: true
early_stopping_patience:
resume_from_checkpoint:
local_rank:
logging_steps: 1
xformers_attention:
flash_attention: true
s2_attention:
warmup_steps: 10
evals_per_epoch: 4
eval_table_size:
eval_max_new_tokens: 128
saves_per_epoch: 1
debug:
deepspeed:
weight_decay: 0.0
fsdp:
fsdp_config:
special_tokens:
pad_token: <|end_of_text|>
lora-out-french-alpaca
This model is a fine-tuned version of meta-llama/Meta-Llama-3-8B on the None dataset. It achieves the following results on the evaluation set:
- Loss: 1.1297
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0002
- train_batch_size: 1
- eval_batch_size: 1
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 4
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 10
- num_epochs: 4
Training results
Training Loss | Epoch | Step | Validation Loss |
---|---|---|---|
1.3359 | 0.0 | 1 | 1.3247 |
1.1121 | 0.25 | 100 | 1.1294 |
1.1716 | 0.5 | 200 | 1.1096 |
1.1122 | 0.75 | 300 | 1.0955 |
1.0474 | 1.0 | 400 | 1.0836 |
1.0447 | 1.24 | 500 | 1.0873 |
1.0131 | 1.49 | 600 | 1.0809 |
0.9847 | 1.74 | 700 | 1.0762 |
0.9584 | 1.99 | 800 | 1.0697 |
0.8514 | 2.23 | 900 | 1.0966 |
0.9217 | 2.48 | 1000 | 1.0995 |
0.8732 | 2.73 | 1100 | 1.0964 |
0.9226 | 2.98 | 1200 | 1.0951 |
0.76 | 3.22 | 1300 | 1.1307 |
0.8056 | 3.47 | 1400 | 1.1314 |
0.7895 | 3.72 | 1500 | 1.1297 |
Framework versions
- PEFT 0.10.0
- Transformers 4.40.0.dev0
- Pytorch 2.1.2+cu118
- Datasets 2.15.0
- Tokenizers 0.15.0
- Downloads last month
- 0
Model tree for kloodia/alpaca
Base model
meta-llama/Meta-Llama-3-8B