metadata
base_model: microsoft/mpnet-base
datasets:
- sentence-transformers/all-nli
language:
- en
library_name: sentence-transformers
license: apache-2.0
metrics:
- cosine_accuracy
- dot_accuracy
- manhattan_accuracy
- euclidean_accuracy
- max_accuracy
pipeline_tag: sentence-similarity
tags:
- sentence-transformers
- sentence-similarity
- feature-extraction
- generated_from_trainer
- dataset_size:100000
- loss:MultipleNegativesRankingLoss
widget:
- source_sentence: People on bicycles waiting at an intersection.
sentences:
- More than one person on a bicycle is obeying traffic laws.
- The people are on skateboards.
- People waiting at a light on bikes.
- source_sentence: A dog is in the water.
sentences:
- A white dog with brown spots standing in water.
- A woman in a white outfit holds her purse while on a crowded bus.
- A wakeboarder is traveling across the water behind a ramp.
- source_sentence: The people are sleeping.
sentences:
- A man and young boy asleep in a chair.
- A father and his son cuddle while sleeping.
- Several people are sitting on the back of a truck outside.
- source_sentence: A dog is swimming.
sentences:
- A brown god relaxes on a brick sidewalk.
- The furry brown dog is swimming in the ocean.
- a black dog swimming in the water with a tennis ball in his mouth
- source_sentence: A dog is swimming.
sentences:
- >-
A woman in all black throws a football indoors while man looks at his
cellphone in the background.
- A white dog with a stick in his mouth standing next to a black dog.
- A dog with yellow fur swims, neck deep, in water.
model-index:
- name: MPNet base trained on AllNLI triplets
results:
- task:
type: triplet
name: Triplet
dataset:
name: all nli dev
type: all-nli-dev
metrics:
- type: cosine_accuracy
value: 0.9059842041312273
name: Cosine Accuracy
- type: dot_accuracy
value: 0.09386391251518833
name: Dot Accuracy
- type: manhattan_accuracy
value: 0.900820170109356
name: Manhattan Accuracy
- type: euclidean_accuracy
value: 0.9017314702308628
name: Euclidean Accuracy
- type: max_accuracy
value: 0.9059842041312273
name: Max Accuracy
- task:
type: triplet
name: Triplet
dataset:
name: all nli test
type: all-nli-test
metrics:
- type: cosine_accuracy
value: 0.9185958541382963
name: Cosine Accuracy
- type: dot_accuracy
value: 0.08019367529126949
name: Dot Accuracy
- type: manhattan_accuracy
value: 0.9142078983204721
name: Manhattan Accuracy
- type: euclidean_accuracy
value: 0.9142078983204721
name: Euclidean Accuracy
- type: max_accuracy
value: 0.9185958541382963
name: Max Accuracy
MPNet base trained on AllNLI triplets
This is a sentence-transformers model finetuned from microsoft/mpnet-base on the sentence-transformers/all-nli dataset. It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
Model Details
Model Description
- Model Type: Sentence Transformer
- Base model: microsoft/mpnet-base
- Maximum Sequence Length: 512 tokens
- Output Dimensionality: 768 tokens
- Similarity Function: Cosine Similarity
- Training Dataset:
- Language: en
- License: apache-2.0
Model Sources
- Documentation: Sentence Transformers Documentation
- Repository: Sentence Transformers on GitHub
- Hugging Face: Sentence Transformers on Hugging Face
Full Model Architecture
SentenceTransformer(
(0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: MPNetModel
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
)
Usage
Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
pip install -U sentence-transformers
Then you can load this model and run inference.
from sentence_transformers import SentenceTransformer
# Download from the 🤗 Hub
model = SentenceTransformer("korruz/mpnet-base-all-nli-triplet")
# Run inference
sentences = [
'A dog is swimming.',
'A dog with yellow fur swims, neck deep, in water.',
'A white dog with a stick in his mouth standing next to a black dog.',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 768]
# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]
Evaluation
Metrics
Triplet
- Dataset:
all-nli-dev
- Evaluated with
TripletEvaluator
Metric | Value |
---|---|
cosine_accuracy | 0.906 |
dot_accuracy | 0.0939 |
manhattan_accuracy | 0.9008 |
euclidean_accuracy | 0.9017 |
max_accuracy | 0.906 |
Triplet
- Dataset:
all-nli-test
- Evaluated with
TripletEvaluator
Metric | Value |
---|---|
cosine_accuracy | 0.9186 |
dot_accuracy | 0.0802 |
manhattan_accuracy | 0.9142 |
euclidean_accuracy | 0.9142 |
max_accuracy | 0.9186 |
Training Details
Training Dataset
sentence-transformers/all-nli
- Dataset: sentence-transformers/all-nli at d482672
- Size: 100,000 training samples
- Columns:
anchor
,positive
, andnegative
- Approximate statistics based on the first 1000 samples:
anchor positive negative type string string string details - min: 7 tokens
- mean: 10.46 tokens
- max: 46 tokens
- min: 6 tokens
- mean: 12.81 tokens
- max: 40 tokens
- min: 5 tokens
- mean: 13.4 tokens
- max: 50 tokens
- Samples:
anchor positive negative A person on a horse jumps over a broken down airplane.
A person is outdoors, on a horse.
A person is at a diner, ordering an omelette.
Children smiling and waving at camera
There are children present
The kids are frowning
A boy is jumping on skateboard in the middle of a red bridge.
The boy does a skateboarding trick.
The boy skates down the sidewalk.
- Loss:
MultipleNegativesRankingLoss
with these parameters:{ "scale": 20.0, "similarity_fct": "cos_sim" }
Training Hyperparameters
Non-Default Hyperparameters
eval_strategy
: stepsper_device_train_batch_size
: 16per_device_eval_batch_size
: 16learning_rate
: 2e-05num_train_epochs
: 1warmup_ratio
: 0.1fp16
: Truebatch_sampler
: no_duplicates
All Hyperparameters
Click to expand
overwrite_output_dir
: Falsedo_predict
: Falseeval_strategy
: stepsprediction_loss_only
: Trueper_device_train_batch_size
: 16per_device_eval_batch_size
: 16per_gpu_train_batch_size
: Noneper_gpu_eval_batch_size
: Nonegradient_accumulation_steps
: 1eval_accumulation_steps
: Nonetorch_empty_cache_steps
: Nonelearning_rate
: 2e-05weight_decay
: 0.0adam_beta1
: 0.9adam_beta2
: 0.999adam_epsilon
: 1e-08max_grad_norm
: 1.0num_train_epochs
: 1max_steps
: -1lr_scheduler_type
: linearlr_scheduler_kwargs
: {}warmup_ratio
: 0.1warmup_steps
: 0log_level
: passivelog_level_replica
: warninglog_on_each_node
: Truelogging_nan_inf_filter
: Truesave_safetensors
: Truesave_on_each_node
: Falsesave_only_model
: Falserestore_callback_states_from_checkpoint
: Falseno_cuda
: Falseuse_cpu
: Falseuse_mps_device
: Falseseed
: 42data_seed
: Nonejit_mode_eval
: Falseuse_ipex
: Falsebf16
: Falsefp16
: Truefp16_opt_level
: O1half_precision_backend
: autobf16_full_eval
: Falsefp16_full_eval
: Falsetf32
: Nonelocal_rank
: 0ddp_backend
: Nonetpu_num_cores
: Nonetpu_metrics_debug
: Falsedebug
: []dataloader_drop_last
: Falsedataloader_num_workers
: 0dataloader_prefetch_factor
: Nonepast_index
: -1disable_tqdm
: Falseremove_unused_columns
: Truelabel_names
: Noneload_best_model_at_end
: Falseignore_data_skip
: Falsefsdp
: []fsdp_min_num_params
: 0fsdp_config
: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}fsdp_transformer_layer_cls_to_wrap
: Noneaccelerator_config
: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}deepspeed
: Nonelabel_smoothing_factor
: 0.0optim
: adamw_torchoptim_args
: Noneadafactor
: Falsegroup_by_length
: Falselength_column_name
: lengthddp_find_unused_parameters
: Noneddp_bucket_cap_mb
: Noneddp_broadcast_buffers
: Falsedataloader_pin_memory
: Truedataloader_persistent_workers
: Falseskip_memory_metrics
: Trueuse_legacy_prediction_loop
: Falsepush_to_hub
: Falseresume_from_checkpoint
: Nonehub_model_id
: Nonehub_strategy
: every_savehub_private_repo
: Falsehub_always_push
: Falsegradient_checkpointing
: Falsegradient_checkpointing_kwargs
: Noneinclude_inputs_for_metrics
: Falseeval_do_concat_batches
: Truefp16_backend
: autopush_to_hub_model_id
: Nonepush_to_hub_organization
: Nonemp_parameters
:auto_find_batch_size
: Falsefull_determinism
: Falsetorchdynamo
: Noneray_scope
: lastddp_timeout
: 1800torch_compile
: Falsetorch_compile_backend
: Nonetorch_compile_mode
: Nonedispatch_batches
: Nonesplit_batches
: Noneinclude_tokens_per_second
: Falseinclude_num_input_tokens_seen
: Falseneftune_noise_alpha
: Noneoptim_target_modules
: Nonebatch_eval_metrics
: Falseeval_on_start
: Falseeval_use_gather_object
: Falsebatch_sampler
: no_duplicatesmulti_dataset_batch_sampler
: proportional
Training Logs
Epoch | Step | Training Loss | all-nli-dev_max_accuracy | all-nli-test_max_accuracy |
---|---|---|---|---|
0 | 0 | - | 0.6832 | - |
0.032 | 100 | 3.2593 | 0.8010 | - |
0.064 | 200 | 1.318 | 0.8152 | - |
0.096 | 300 | 1.2552 | 0.8256 | - |
0.128 | 400 | 1.3322 | 0.8141 | - |
0.16 | 500 | 1.4141 | 0.8224 | - |
0.192 | 600 | 1.2339 | 0.8149 | - |
0.224 | 700 | 1.2556 | 0.8091 | - |
0.256 | 800 | 1.138 | 0.8262 | - |
0.288 | 900 | 1.0928 | 0.8311 | - |
0.32 | 1000 | 1.0438 | 0.8341 | - |
0.352 | 1100 | 1.1159 | 0.8323 | - |
0.384 | 1200 | 1.1909 | 0.8472 | - |
0.416 | 1300 | 1.2542 | 0.8543 | - |
0.448 | 1400 | 1.2359 | 0.8574 | - |
0.48 | 1500 | 1.0265 | 0.8712 | - |
0.512 | 1600 | 0.8688 | 0.8783 | - |
0.544 | 1700 | 0.8819 | 0.8841 | - |
0.576 | 1800 | 0.8903 | 0.8931 | - |
0.608 | 1900 | 0.9334 | 0.8858 | - |
0.64 | 2000 | 1.0225 | 0.9028 | - |
0.672 | 2100 | 0.9252 | 0.9034 | - |
0.704 | 2200 | 0.9036 | 0.9033 | - |
0.736 | 2300 | 0.8122 | 0.9040 | - |
0.768 | 2400 | 0.8503 | 0.9058 | - |
0.8 | 2500 | 0.8448 | 0.9055 | - |
0.832 | 2600 | 0.7918 | 0.9039 | - |
0.864 | 2700 | 0.7787 | 0.9025 | - |
0.896 | 2800 | 0.8624 | 0.9034 | - |
0.928 | 2900 | 0.9513 | 0.9058 | - |
0.96 | 3000 | 0.6548 | 0.9072 | - |
0.992 | 3100 | 0.0163 | 0.9060 | - |
1.0 | 3125 | - | - | 0.9186 |
Framework Versions
- Python: 3.10.12
- Sentence Transformers: 3.0.1
- Transformers: 4.44.2
- PyTorch: 2.4.0+cu121
- Accelerate: 0.33.0
- Datasets: 2.21.0
- Tokenizers: 0.19.1
Citation
BibTeX
Sentence Transformers
@inproceedings{reimers-2019-sentence-bert,
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2019",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/1908.10084",
}
MultipleNegativesRankingLoss
@misc{henderson2017efficient,
title={Efficient Natural Language Response Suggestion for Smart Reply},
author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
year={2017},
eprint={1705.00652},
archivePrefix={arXiv},
primaryClass={cs.CL}
}