|
--- |
|
license: apache-2.0 |
|
--- |
|
<h1><a href="https://github.com/LingyvKong/OneChart">OneChart: Purify the Chart Structural Extraction via One Auxiliary Token</a></h1> |
|
|
|
Jinyue Chen*, Lingyu Kong*, [Haoran Wei](https://scholar.google.com/citations?user=J4naK0MAAAAJ&hl=en), Chenglong Liu, [Zheng Ge](https://joker316701882.github.io/), Liang Zhao, [Jianjian Sun](https://scholar.google.com/citations?user=MVZrGkYAAAAJ&hl=en), Chunrui Han, [Xiangyu Zhang](https://scholar.google.com/citations?user=yuB-cfoAAAAJ&hl=en) |
|
|
|
[Github](https://github.com/LingyvKong/OneChart) |
|
[arxiv](https://arxiv.org/abs/2404.09987) |
|
|
|
## Quickly try the demo using hugginface: |
|
```python |
|
from transformers import AutoModel, AutoTokenizer |
|
|
|
tokenizer = AutoTokenizer.from_pretrained('kppkkp/OneChart', trust_remote_code=True, use_fast=False, padding_side="right") |
|
model = AutoModel.from_pretrained('kppkkp/OneChart', trust_remote_code=True, low_cpu_mem_usage=True, device_map='cuda') |
|
model = model.eval().cuda() |
|
|
|
# input your test image |
|
image_file = 'image.png' |
|
res = model.chat(tokenizer, image_file, reliable_check=True) |
|
print(res) |
|
``` |