Evaluation on Zeroth-Korean ASR corpus
Google colab notebook(Korean)
from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor
from datasets import load_dataset
import soundfile as sf
import torch
from jiwer import wer
processor = Wav2Vec2Processor.from_pretrained("kresnik/wav2vec2-large-xlsr-korean")
model = Wav2Vec2ForCTC.from_pretrained("kresnik/wav2vec2-large-xlsr-korean").to('cuda')
ds = load_dataset("kresnik/zeroth_korean", "clean")
test_ds = ds['test']
def map_to_array(batch):
speech, _ = sf.read(batch["file"])
batch["speech"] = speech
return batch
test_ds = test_ds.map(map_to_array)
def map_to_pred(batch):
inputs = processor(batch["speech"], sampling_rate=16000, return_tensors="pt", padding="longest")
input_values = inputs.input_values.to("cuda")
with torch.no_grad():
logits = model(input_values).logits
predicted_ids = torch.argmax(logits, dim=-1)
transcription = processor.batch_decode(predicted_ids)
batch["transcription"] = transcription
return batch
result = test_ds.map(map_to_pred, batched=True, batch_size=16, remove_columns=["speech"])
print("WER:", wer(result["text"], result["transcription"]))
Expected WER: 4.74%
Expected CER: 1.78%