krushal's picture
End of training
c1a97a5
metadata
license: cc-by-nc-sa-4.0
base_model: microsoft/layoutlmv3-base
tags:
  - generated_from_trainer
datasets:
  - generated
metrics:
  - precision
  - recall
  - f1
  - accuracy
model-index:
  - name: layoutlmv3-finetuned-invoice
    results:
      - task:
          name: Token Classification
          type: token-classification
        dataset:
          name: generated
          type: generated
          config: sroie
          split: test
          args: sroie
        metrics:
          - name: Precision
            type: precision
            value: 0.9979716024340771
          - name: Recall
            type: recall
            value: 0.9979716024340771
          - name: F1
            type: f1
            value: 0.9979716024340771
          - name: Accuracy
            type: accuracy
            value: 0.9997893406361913

layoutlmv3-finetuned-invoice

This model is a fine-tuned version of microsoft/layoutlmv3-base on the generated dataset. It achieves the following results on the evaluation set:

  • Loss: 0.0019
  • Precision: 0.9980
  • Recall: 0.9980
  • F1: 0.9980
  • Accuracy: 0.9998

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 1e-05
  • train_batch_size: 2
  • eval_batch_size: 2
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • training_steps: 2000

Training results

Training Loss Epoch Step Validation Loss Precision Recall F1 Accuracy
No log 2.0 100 0.1069 0.946 0.9594 0.9527 0.9943
No log 4.0 200 0.0229 0.972 0.9858 0.9789 0.9971
No log 6.0 300 0.0158 0.972 0.9858 0.9789 0.9971
No log 8.0 400 0.0113 0.972 0.9858 0.9789 0.9971
0.1416 10.0 500 0.0103 0.9800 0.9919 0.9859 0.9979
0.1416 12.0 600 0.0047 0.9980 0.9959 0.9970 0.9996
0.1416 14.0 700 0.0035 0.9939 0.9959 0.9949 0.9994
0.1416 16.0 800 0.0044 0.9980 0.9959 0.9970 0.9996
0.1416 18.0 900 0.0027 0.9980 0.9959 0.9970 0.9996
0.0049 20.0 1000 0.0019 0.9980 0.9980 0.9980 0.9998
0.0049 22.0 1100 0.0017 1.0 1.0 1.0 1.0
0.0049 24.0 1200 0.0041 0.9960 0.9980 0.9970 0.9996
0.0049 26.0 1300 0.0033 0.9960 0.9980 0.9970 0.9996
0.0049 28.0 1400 0.0029 0.9960 0.9980 0.9970 0.9996
0.0029 30.0 1500 0.0018 0.9960 0.9980 0.9970 0.9996
0.0029 32.0 1600 0.0019 0.9960 0.9980 0.9970 0.9996
0.0029 34.0 1700 0.0016 0.9980 0.9980 0.9980 0.9998
0.0029 36.0 1800 0.0017 0.9980 0.9980 0.9980 0.9998
0.0029 38.0 1900 0.0018 0.9980 0.9980 0.9980 0.9998
0.0019 40.0 2000 0.0014 0.9980 0.9980 0.9980 0.9998

Framework versions

  • Transformers 4.36.0.dev0
  • Pytorch 2.1.0+cu118
  • Datasets 2.14.6
  • Tokenizers 0.14.1