SetFit with sentence-transformers/paraphrase-mpnet-base-v2

This is a SetFit model that can be used for Text Classification. This SetFit model uses sentence-transformers/paraphrase-mpnet-base-v2 as the Sentence Transformer embedding model. A LogisticRegression instance is used for classification.

The model has been trained using an efficient few-shot learning technique that involves:

  1. Fine-tuning a Sentence Transformer with contrastive learning.
  2. Training a classification head with features from the fine-tuned Sentence Transformer.

Model Details

Model Description

Model Sources

Model Labels

Label Examples
neutral
  • 'Administrative Resolution APS/DJ/DI/No. 221/2021 establishes that for fiscal year 2021 the maximum limit for investments by insurance companies set by the Central Bank of Bolivia includes investments in debt securities issued abroad by the National General Treasury (Bolivian Sovereign Bonds).'
  • 'Decree No. 04 of the head of the Insurance State Supervision Service replaced Decree No. 51/01 of the president of the National Bank of Georgia as the regulation governing insurance companies and pension funds.'
  • 'The Law on the Securities Market was promulgated, setting out the legal framework governing capital market operations.'
loosen
  • 'Limits on transfers abroad were increased. Depositors may transfer within their normal business activity and on presentation of supporting documents up to €20,000 a day an account without approval and €20,001 to €300,000 a transaction with approval by the committee established by the MOF and the Central Bank of Cyprus based on the liquidity buffer situation of the bank. Amounts exceeding €300,000 a transaction require individual approval of the committee.'
  • 'According to the Consolidated Law of Finance (Legislative Decree No. 58 of February 24, 1998) as amended by Legislative Decree No. 44/2014, if mutual funds are covered under EU directives (UCITS and European Directive on Alternative Investment Fund Managers), the CONSOB must be notified before the offering. Under the same amendment, offering securities issued by mutual funds that are not covered under EU directives is not allowed. Previously, offerings of securities issued by mutual funds not covered under EU directives were subject to authorization.'
  • 'The capital outflow tax was reduced to 4.25% from 4.50%.'
tighten
  • 'Bank Indonesia Regulation No. 14/25/PBI/2012 of December 27, 2012, concerning Receipt of Export Proceeds and Withdrawal of Foreign Currency on External Debt refines Bank Indonesia Regulations Nos. 13/20/PBI/2011 and 14/11/PBI/2012. The new regulation aims to ensure that receipt of foreign exchange proceeds from debt issuance abroad takes place through a domestic foreign exchange bank in the Indonesian banking system. These funds do not have to be kept in a domestic bank and they may be freely transferred abroad. The foreign exchange does not have to be converted to domestic currency. This requirement did not apply to agreements signed before January 2, 2012, during a transition period that ended December 31, 2012.'
  • 'Investment Proclamation No. 1180/2020 introduced a new framework to register and administer foreign direct investment. It included provisions for a minimum capital amount per project a foreign investor must invest ranging from US$50,000 to US$200,000 depending on the type of investment being undertaken.'
  • 'External debt of publicly owned enterprises must be approved by the Superior Strategic Council of Publicly Owned Enterprises (Consejo Superior Estratégico de la Empresa Pública—COSEEP) pursuant to Law No. 466 of December 27, 2013.'

Evaluation

Metrics

Label Accuracy
all 0.8281

Uses

Direct Use for Inference

First install the SetFit library:

pip install setfit

Then you can load this model and run inference.

from setfit import SetFitModel

# Download from the 🤗 Hub
model = SetFitModel.from_pretrained("kteoh37/setfit_sectionxi_changes_100_examples")
# Run inference
preds = model("Constitutional changes prohibit selling agricultural land to foreigners.")

Training Details

Training Set Metrics

Training set Min Median Max
Word count 6 38.4936 225
Label Training Sample Count
loosen 100
tighten 100
neutral 35

Training Hyperparameters

  • batch_size: (16, 16)
  • num_epochs: (10, 10)
  • max_steps: -1
  • sampling_strategy: oversampling
  • body_learning_rate: (2e-05, 1e-05)
  • head_learning_rate: 0.01
  • loss: CosineSimilarityLoss
  • distance_metric: cosine_distance
  • margin: 0.25
  • end_to_end: False
  • use_amp: False
  • warmup_proportion: 0.1
  • seed: 42
  • eval_max_steps: -1
  • load_best_model_at_end: True

Training Results

Epoch Step Training Loss Validation Loss
0.0005 1 0.2629 -
0.0235 50 0.2148 -
0.0471 100 0.2342 -
0.0706 150 0.2326 -
0.0941 200 0.2391 -
0.1176 250 0.2351 -
0.1412 300 0.1484 -
0.1647 350 0.1034 -
0.1882 400 0.123 -
0.2118 450 0.064 -
0.2353 500 0.0697 -
0.2588 550 0.0367 -
0.2824 600 0.0695 -
0.3059 650 0.0044 -
0.3294 700 0.009 -
0.3529 750 0.0027 -
0.3765 800 0.0012 -
0.4 850 0.0609 -
0.4235 900 0.0019 -
0.4471 950 0.0013 -
0.4706 1000 0.0031 -
0.4941 1050 0.0004 -
0.5176 1100 0.0029 -
0.5412 1150 0.001 -
0.5647 1200 0.0018 -
0.5882 1250 0.0023 -
0.6118 1300 0.0003 -
0.6353 1350 0.0007 -
0.6588 1400 0.0204 -
0.6824 1450 0.0486 -
0.7059 1500 0.0056 -
0.7294 1550 0.0003 -
0.7529 1600 0.0052 -
0.7765 1650 0.0033 -
0.8 1700 0.0021 -
0.8235 1750 0.0003 -
0.8471 1800 0.0111 -
0.8706 1850 0.0003 -
0.8941 1900 0.0531 -
0.9176 1950 0.0075 -
0.9412 2000 0.0003 -
0.9647 2050 0.0022 -
0.9882 2100 0.0006 -
1.0 2125 - 0.1384
1.0118 2150 0.0001 -
1.0353 2200 0.0001 -
1.0588 2250 0.0011 -
1.0824 2300 0.0001 -
1.1059 2350 0.0002 -
1.1294 2400 0.0 -
1.1529 2450 0.0002 -
1.1765 2500 0.0003 -
1.2 2550 0.0116 -
1.2235 2600 0.0002 -
1.2471 2650 0.0002 -
1.2706 2700 0.0001 -
1.2941 2750 0.0002 -
1.3176 2800 0.0 -
1.3412 2850 0.0132 -
1.3647 2900 0.0265 -
1.3882 2950 0.0035 -
1.4118 3000 0.0003 -
1.4353 3050 0.0022 -
1.4588 3100 0.0013 -
1.4824 3150 0.0006 -
1.5059 3200 0.0003 -
1.5294 3250 0.0 -
1.5529 3300 0.0198 -
1.5765 3350 0.0001 -
1.6 3400 0.0 -
1.6235 3450 0.0001 -
1.6471 3500 0.0 -
1.6706 3550 0.0 -
1.6941 3600 0.0002 -
1.7176 3650 0.0 -
1.7412 3700 0.0 -
1.7647 3750 0.0023 -
1.7882 3800 0.0 -
1.8118 3850 0.0074 -
1.8353 3900 0.0004 -
1.8588 3950 0.0001 -
1.8824 4000 0.0228 -
1.9059 4050 0.0256 -
1.9294 4100 0.0316 -
1.9529 4150 0.0001 -
1.9765 4200 0.0 -
2.0 4250 0.0 0.1386
2.0235 4300 0.0006 -
2.0471 4350 0.0001 -
2.0706 4400 0.0072 -
2.0941 4450 0.0433 -
2.1176 4500 0.0001 -
2.1412 4550 0.0004 -
2.1647 4600 0.0 -
2.1882 4650 0.0024 -
2.2118 4700 0.0 -
2.2353 4750 0.0001 -
2.2588 4800 0.0 -
2.2824 4850 0.0002 -
2.3059 4900 0.0001 -
2.3294 4950 0.0 -
2.3529 5000 0.002 -
2.3765 5050 0.0303 -
2.4 5100 0.0799 -
2.4235 5150 0.0001 -
2.4471 5200 0.0 -
2.4706 5250 0.0024 -
2.4941 5300 0.0001 -
2.5176 5350 0.0138 -
2.5412 5400 0.0 -
2.5647 5450 0.0001 -
2.5882 5500 0.0 -
2.6118 5550 0.0 -
2.6353 5600 0.0 -
2.6588 5650 0.0 -
2.6824 5700 0.0396 -
2.7059 5750 0.0001 -
2.7294 5800 0.0 -
2.7529 5850 0.0002 -
2.7765 5900 0.0001 -
2.8 5950 0.0037 -
2.8235 6000 0.0 -
2.8471 6050 0.0186 -
2.8706 6100 0.0043 -
2.8941 6150 0.0315 -
2.9176 6200 0.0144 -
2.9412 6250 0.0 -
2.9647 6300 0.0052 -
2.9882 6350 0.0003 -
3.0 6375 - 0.1526
3.0118 6400 0.0 -
3.0353 6450 0.0002 -
3.0588 6500 0.0011 -
3.0824 6550 0.0 -
3.1059 6600 0.0 -
3.1294 6650 0.0002 -
3.1529 6700 0.0001 -
3.1765 6750 0.0002 -
3.2 6800 0.0191 -
3.2235 6850 0.0001 -
3.2471 6900 0.0 -
3.2706 6950 0.0036 -
3.2941 7000 0.0001 -
3.3176 7050 0.0197 -
3.3412 7100 0.0101 -
3.3647 7150 0.0 -
3.3882 7200 0.0 -
3.4118 7250 0.0003 -
3.4353 7300 0.0001 -
3.4588 7350 0.0 -
3.4824 7400 0.0001 -
3.5059 7450 0.0174 -
3.5294 7500 0.0 -
3.5529 7550 0.0 -
3.5765 7600 0.0 -
3.6 7650 0.0 -
3.6235 7700 0.0012 -
3.6471 7750 0.0 -
3.6706 7800 0.0 -
3.6941 7850 0.0 -
3.7176 7900 0.0 -
3.7412 7950 0.0 -
3.7647 8000 0.0 -
3.7882 8050 0.0 -
3.8118 8100 0.0 -
3.8353 8150 0.0004 -
3.8588 8200 0.0 -
3.8824 8250 0.0154 -
3.9059 8300 0.0201 -
3.9294 8350 0.0332 -
3.9529 8400 0.0 -
3.9765 8450 0.0002 -
4.0 8500 0.0028 0.1434
4.0235 8550 0.0001 -
4.0471 8600 0.0 -
4.0706 8650 0.0077 -
4.0941 8700 0.0435 -
4.1176 8750 0.0 -
4.1412 8800 0.0001 -
4.1647 8850 0.0 -
4.1882 8900 0.0024 -
4.2118 8950 0.0 -
4.2353 9000 0.0 -
4.2588 9050 0.0 -
4.2824 9100 0.0002 -
4.3059 9150 0.0 -
4.3294 9200 0.0263 -
4.3529 9250 0.0 -
4.3765 9300 0.0 -
4.4 9350 0.0416 -
4.4235 9400 0.0 -
4.4471 9450 0.0061 -
4.4706 9500 0.0121 -
4.4941 9550 0.0001 -
4.5176 9600 0.0187 -
4.5412 9650 0.0 -
4.5647 9700 0.0 -
4.5882 9750 0.0 -
4.6118 9800 0.0 -
4.6353 9850 0.0 -
4.6588 9900 0.0117 -
4.6824 9950 0.0367 -
4.7059 10000 0.006 -
4.7294 10050 0.0 -
4.7529 10100 0.0002 -
4.7765 10150 0.0003 -
4.8 10200 0.0 -
4.8235 10250 0.0 -
4.8471 10300 0.0085 -
4.8706 10350 0.0 -
4.8941 10400 0.0369 -
4.9176 10450 0.0091 -
4.9412 10500 0.0 -
4.9647 10550 0.0 -
4.9882 10600 0.0 -
5.0 10625 - 0.1711
5.0118 10650 0.0 -
5.0353 10700 0.0 -
5.0588 10750 0.0 -
5.0824 10800 0.0238 -
5.1059 10850 0.0 -
5.1294 10900 0.0075 -
5.1529 10950 0.0 -
5.1765 11000 0.0 -
5.2 11050 0.0179 -
5.2235 11100 0.0 -
5.2471 11150 0.0 -
5.2706 11200 0.0171 -
5.2941 11250 0.0002 -
5.3176 11300 0.0 -
5.3412 11350 0.0128 -
5.3647 11400 0.0 -
5.3882 11450 0.0029 -
5.4118 11500 0.0 -
5.4353 11550 0.0 -
5.4588 11600 0.0 -
5.4824 11650 0.0 -
5.5059 11700 0.0 -
5.5294 11750 0.0 -
5.5529 11800 0.0 -
5.5765 11850 0.0001 -
5.6 11900 0.0001 -
5.6235 11950 0.0001 -
5.6471 12000 0.0 -
5.6706 12050 0.0001 -
5.6941 12100 0.0 -
5.7176 12150 0.0 -
5.7412 12200 0.0 -
5.7647 12250 0.0 -
5.7882 12300 0.006 -
5.8118 12350 0.0001 -
5.8353 12400 0.0042 -
5.8588 12450 0.0001 -
5.8824 12500 0.0 -
5.9059 12550 0.017 -
5.9294 12600 0.0282 -
5.9529 12650 0.0 -
5.9765 12700 0.0046 -
6.0 12750 0.0 0.1451
6.0235 12800 0.0001 -
6.0471 12850 0.0002 -
6.0706 12900 0.0625 -
6.0941 12950 0.0633 -
6.1176 13000 0.0598 -
6.1412 13050 0.0001 -
6.1647 13100 0.0012 -
6.1882 13150 0.0004 -
6.2118 13200 0.0 -
6.2353 13250 0.0002 -
6.2588 13300 0.0 -
6.2824 13350 0.0608 -
6.3059 13400 0.0006 -
6.3294 13450 0.0 -
6.3529 13500 0.0587 -
6.3765 13550 0.0003 -
6.4 13600 0.0429 -
6.4235 13650 0.0 -
6.4471 13700 0.0 -
6.4706 13750 0.0001 -
6.4941 13800 0.0 -
6.5176 13850 0.0135 -
6.5412 13900 0.019 -
6.5647 13950 0.0028 -
6.5882 14000 0.0 -
6.6118 14050 0.0 -
6.6353 14100 0.0169 -
6.6588 14150 0.0167 -
6.6824 14200 0.0375 -
6.7059 14250 0.0 -
6.7294 14300 0.0044 -
6.7529 14350 0.0 -
6.7765 14400 0.0 -
6.8 14450 0.0025 -
6.8235 14500 0.0033 -
6.8471 14550 0.0145 -
6.8706 14600 0.0 -
6.8941 14650 0.0346 -
6.9176 14700 0.0117 -
6.9412 14750 0.0001 -
6.9647 14800 0.0 -
6.9882 14850 0.0 -
7.0 14875 - 0.1828
7.0118 14900 0.0 -
7.0353 14950 0.0 -
7.0588 15000 0.0031 -
7.0824 15050 0.0001 -
7.1059 15100 0.0055 -
7.1294 15150 0.0208 -
7.1529 15200 0.0 -
7.1765 15250 0.0 -
7.2 15300 0.0134 -
7.2235 15350 0.0 -
7.2471 15400 0.0222 -
7.2706 15450 0.0 -
7.2941 15500 0.0001 -
7.3176 15550 0.0 -
7.3412 15600 0.0111 -
7.3647 15650 0.0 -
7.3882 15700 0.0025 -
7.4118 15750 0.0 -
7.4353 15800 0.0 -
7.4588 15850 0.0 -
7.4824 15900 0.0 -
7.5059 15950 0.0 -
7.5294 16000 0.0 -
7.5529 16050 0.0 -
7.5765 16100 0.0 -
7.6 16150 0.0 -
7.6235 16200 0.0001 -
7.6471 16250 0.0203 -
7.6706 16300 0.0 -
7.6941 16350 0.0 -
7.7176 16400 0.0 -
7.7412 16450 0.0186 -
7.7647 16500 0.0 -
7.7882 16550 0.0 -
7.8118 16600 0.0049 -
7.8353 16650 0.0 -
7.8588 16700 0.0044 -
7.8824 16750 0.0266 -
7.9059 16800 0.015 -
7.9294 16850 0.0331 -
7.9529 16900 0.0 -
7.9765 16950 0.0 -
8.0 17000 0.0 0.1778
8.0235 17050 0.0 -
8.0471 17100 0.0 -
8.0706 17150 0.0082 -
8.0941 17200 0.0414 -
8.1176 17250 0.0 -
8.1412 17300 0.0 -
8.1647 17350 0.0025 -
8.1882 17400 0.0 -
8.2118 17450 0.0 -
8.2353 17500 0.0 -
8.2588 17550 0.0 -
8.2824 17600 0.0 -
8.3059 17650 0.0 -
8.3294 17700 0.0033 -
8.3529 17750 0.0 -
8.3765 17800 0.0033 -
8.4 17850 0.0371 -
8.4235 17900 0.0217 -
8.4471 17950 0.004 -
8.4706 18000 0.0 -
8.4941 18050 0.0 -
8.5176 18100 0.0179 -
8.5412 18150 0.0 -
8.5647 18200 0.0 -
8.5882 18250 0.0032 -
8.6118 18300 0.0 -
8.6353 18350 0.0026 -
8.6588 18400 0.0 -
8.6824 18450 0.0387 -
8.7059 18500 0.0 -
8.7294 18550 0.0 -
8.7529 18600 0.0204 -
8.7765 18650 0.0212 -
8.8 18700 0.0 -
8.8235 18750 0.0065 -
8.8471 18800 0.0114 -
8.8706 18850 0.0 -
8.8941 18900 0.0335 -
8.9176 18950 0.0147 -
8.9412 19000 0.0 -
8.9647 19050 0.0053 -
8.9882 19100 0.0 -
9.0 19125 - 0.1773
9.0118 19150 0.0181 -
9.0353 19200 0.0 -
9.0588 19250 0.0 -
9.0824 19300 0.0 -
9.1059 19350 0.0226 -
9.1294 19400 0.0 -
9.1529 19450 0.0 -
9.1765 19500 0.0 -
9.2 19550 0.013 -
9.2235 19600 0.0036 -
9.2471 19650 0.0 -
9.2706 19700 0.0 -
9.2941 19750 0.0 -
9.3176 19800 0.0 -
9.3412 19850 0.0537 -
9.3647 19900 0.0 -
9.3882 19950 0.0031 -
9.4118 20000 0.0 -
9.4353 20050 0.0 -
9.4588 20100 0.0 -
9.4824 20150 0.0 -
9.5059 20200 0.0 -
9.5294 20250 0.0 -
9.5529 20300 0.0033 -
9.5765 20350 0.0 -
9.6 20400 0.0 -
9.6235 20450 0.0 -
9.6471 20500 0.0 -
9.6706 20550 0.0035 -
9.6941 20600 0.0 -
9.7176 20650 0.0036 -
9.7412 20700 0.0035 -
9.7647 20750 0.0 -
9.7882 20800 0.0 -
9.8118 20850 0.0 -
9.8353 20900 0.0 -
9.8588 20950 0.0 -
9.8824 21000 0.0036 -
9.9059 21050 0.0127 -
9.9294 21100 0.0364 -
9.9529 21150 0.0 -
9.9765 21200 0.0 -
10.0 21250 0.0 0.1803
  • The bold row denotes the saved checkpoint.

Framework Versions

  • Python: 3.10.12
  • SetFit: 1.0.3
  • Sentence Transformers: 3.1.0
  • Transformers: 4.39.0
  • PyTorch: 2.4.0+cu121
  • Datasets: 3.0.0
  • Tokenizers: 0.15.2

Citation

BibTeX

@article{https://doi.org/10.48550/arxiv.2209.11055,
    doi = {10.48550/ARXIV.2209.11055},
    url = {https://arxiv.org/abs/2209.11055},
    author = {Tunstall, Lewis and Reimers, Nils and Jo, Unso Eun Seo and Bates, Luke and Korat, Daniel and Wasserblat, Moshe and Pereg, Oren},
    keywords = {Computation and Language (cs.CL), FOS: Computer and information sciences, FOS: Computer and information sciences},
    title = {Efficient Few-Shot Learning Without Prompts},
    publisher = {arXiv},
    year = {2022},
    copyright = {Creative Commons Attribution 4.0 International}
}
Downloads last month
18
Safetensors
Model size
109M params
Tensor type
F32
·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for kteoh37/setfit_sectionxi_changes_100_examples

Finetuned
(256)
this model

Evaluation results