bert-base-finetuned-ynat

This model is a fine-tuned version of klue/bert-base on the klue dataset. It achieves the following results on the evaluation set:

  • Loss: 0.3817
  • F1: 0.8673

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 256
  • eval_batch_size: 256
  • seed: 1
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 100
  • num_epochs: 10

Training results

Training Loss Epoch Step Validation Loss F1
No log 1.0 179 0.3817 0.8673
No log 2.0 358 0.4065 0.8634
0.2194 3.0 537 0.4077 0.8624
0.2194 4.0 716 0.4443 0.8584
0.2194 5.0 895 0.4795 0.8569
0.1477 6.0 1074 0.5159 0.8570
0.1477 7.0 1253 0.5445 0.8569
0.1477 8.0 1432 0.5711 0.8565
0.0849 9.0 1611 0.5913 0.8542
0.0849 10.0 1790 0.5945 0.8553

Framework versions

  • Transformers 4.34.1
  • Pytorch 2.1.0+cu118
  • Datasets 2.14.6
  • Tokenizers 0.14.1
Downloads last month
27
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for kyeul611/roberta-large-finetuned-ynat

Base model

klue/bert-base
Finetuned
(60)
this model

Dataset used to train kyeul611/roberta-large-finetuned-ynat

Evaluation results