|
--- |
|
language: |
|
- ko |
|
datasets: |
|
- kyujinpy/KOR-OpenOrca-Platypus-v3 |
|
library_name: transformers |
|
pipeline_tag: text-generation |
|
license: cc-by-nc-sa-4.0 |
|
--- |
|
**(주)미디어그룹사람과숲과 (주)마커의 LLM 연구 컨소시엄에서 개발된 모델입니다** |
|
**The license is `cc-by-nc-sa-4.0`.** |
|
|
|
# **🐳KOR-Orca-Platypus-13B🐳** |
|
![img](./Korean-OpenOrca.png) |
|
|
|
## Model Details |
|
|
|
**Model Developers** Kyujin Han (kyujinpy) |
|
|
|
**Input** Models input text only. |
|
|
|
**Output** Models generate text only. |
|
|
|
**Model Architecture** |
|
Korean-OpenOrca-13B is an auto-regressive language model based on the LLaMA2 transformer architecture. |
|
|
|
**Repo Link** |
|
Github Korean-OpenOrca: [🐳Korean-OpenOrca🐳](https://github.com/Marker-Inc-Korea/Korean-OpenOrca) |
|
|
|
**Base Model** [hyunseoki/ko-en-llama2-13b](https://huggingface.co/hyunseoki/ko-en-llama2-13b) |
|
|
|
**Training Dataset** |
|
I use [kyujinpy/KOR-OpenOrca-Platypus-v3](https://huggingface.co/datasets/kyujinpy/KOR-OpenOrca-Platypus-v3). |
|
(with NEFTune.) |
|
|
|
I use A100 GPU 40GB and COLAB, when trianing. |
|
|
|
|
|
# **Model Benchmark** |
|
|
|
## KO-LLM leaderboard |
|
- Follow up as [Open KO-LLM LeaderBoard](https://huggingface.co/spaces/upstage/open-ko-llm-leaderboard). |
|
|
|
| Model | Average |Ko-ARC | Ko-HellaSwag | Ko-MMLU | Ko-TruthfulQA | Ko-CommonGen V2 | |
|
| --- | --- | --- | --- | --- | --- | --- | |
|
| [KOR-Orca-Platypus-13B🐳] | 46.59 | 42.06 | 53.95 | 42.28 | 43.55 | 51.12 | |
|
| **KOR-Orca-Platypus-13B🐳-v2** | 49.48 | 44.03 | 54.43 | 42.23 | 41.64 | 65.05 | |
|
| KOR-Orca-Platypus-13B🐳-v3 | 48.37 | 43.77 | 54.27 | 42.66 | 38.58 | 62.57 | |
|
> Compare with Top 4 SOTA models. (update: 10/09) |
|
|
|
|
|
# Implementation Code |
|
```python |
|
### KO-Platypus |
|
from transformers import AutoModelForCausalLM, AutoTokenizer |
|
import torch |
|
|
|
repo = "kyujinpy/KOR-Orca-Platypus-13B-v3" |
|
OpenOrca = AutoModelForCausalLM.from_pretrained( |
|
repo, |
|
return_dict=True, |
|
torch_dtype=torch.float16, |
|
device_map='auto' |
|
) |
|
OpenOrca_tokenizer = AutoTokenizer.from_pretrained(repo) |
|
``` |
|
|
|
--- |